Dendrite branching has an important role in normal brain function. Here we report that overexpression of cypin, a protein that has guanine deaminase activity and is expressed in developing processes in rat hippocampal neurons, results in increased dendrite branching in primary culture. Mutant cypin proteins that lack guanine deaminase activity act in a dominant-negative manner when expressed in primary neurons. Furthermore, we knocked down cypin protein levels using a new strategy: expressing a 5' end-mutated U1 small nuclear RNA (snRNA) to inhibit maturation of cypin mRNA. Neurons that express this mutant snRNA show little or no detectable cypin protein and fewer dendrites than normal. In addition, we found that cypin binds directly to tubulin heterodimers and promotes microtubule polymerization. Thus, our results demonstrate a new pathway by which dendrite patterning is regulated, and we also introduce a new method for decreasing endogenous protein expression in neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn1179 | DOI Listing |
Proteins
February 2025
Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Valacyclovir, enzymatically hydrolyzed in the body to acyclovir, is a guanine-based nucleoside analog commonly prescribed as an antiviral therapy. Previous reports suggest that guanosine analogs bind to guanine deaminase; however, it is unclear whether they act as inhibitors or substrates. Data from our laboratory suggest that inhibition of guanine deaminase by small molecules attenuates spinal cord injury-induced neuropathic pain.
View Article and Find Full Text PDFeNeuro
February 2024
Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
Cypin (cytosolic postsynaptic density protein 95 interactor) is the primary guanine deaminase in the central nervous system (CNS), promoting the metabolism of guanine to xanthine, an important reaction in the purine salvage pathway. Activation of the purine salvage pathway leads to the production of uric acid (UA). UA has paradoxical effects, specifically in the context of CNS injury as it confers neuroprotection, but it also promotes pain.
View Article and Find Full Text PDFMol Cell Neurosci
December 2022
Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America. Electronic address:
Cytosolic PSD-95 interactor (cypin) is a multifunctional, guanine deaminase that plays a major role in shaping the morphology of the dendritic arbor of hippocampal and cortical neurons. Cypin catalyzes the Zn-dependent deamination of guanine to xanthine, which is then metabolized to uric acid by xanthine oxidase. Cypin binds to tubulin heterodimers via its carboxyl terminal region (amino acids (aa) 350-454), which contains a collapsin response mediator protein (CRMP) homology domain (aa 350-403).
View Article and Find Full Text PDFNetw Neurosci
February 2021
Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm, and increases mEPSC frequency.
View Article and Find Full Text PDFDev Dyn
April 2019
Boston College, Department of Biology, Chestnut Hill, Massachusetts.
Background: The mammalian guanine deaminase (GDA), called cypin, is important for proper neural development, by regulating dendritic arborization through modulation of microtubule (MT) dynamics. Additionally, cypin can promote MT assembly in vitro. However, it has never been tested whether cypin (or other GDA orthologs) binds to MTs or modulates MT dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!