False-positive result with BinaxNOW Legionella Antigen immunochromatographic (ICT) assay: response to Helbig et al. (2001).

J Med Microbiol

Clinical Biology, Virga Jesse Ziekenjuis, Stadsomvaart 11, 3500 Hasselt, Belgium.

Published: February 2004

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.05000-0DOI Listing

Publication Analysis

Top Keywords

false-positive result
4
result binaxnow
4
binaxnow legionella
4
legionella antigen
4
antigen immunochromatographic
4
immunochromatographic ict
4
ict assay
4
assay response
4
response helbig
4
helbig 2001
4

Similar Publications

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and poses a significant public health challenge. Early detection is crucial for improving patient outcomes, with serum biomarkers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and cytokeratin fragment 19 (CYFRA 21-1) playing a critical role in early screening and pathological classification of NSCLC. However, due to being mainly based on corresponding antibody binding reactions, existing detection technologies for these serum biomarkers have shortcomings such as complex operations, high false positive rates, and high costs.

View Article and Find Full Text PDF

Enhanced Localization in Wireless Sensor Networks Using a Bat-Optimized Malicious Anchor Node Prediction Algorithm.

Sensors (Basel)

December 2024

Power Electronics, Machines and Control (PEMC) Research Institute, University of Nottingham, 15 Triumph Rd, Lenton, Nottingham NG7 2GT, UK.

The accuracy of node localization plays a crucial role in the performance and reliability of wireless sensor networks (WSNs), which are widely utilized in fields like security systems and environmental monitoring. The integrity of these networks is often threatened by the presence of malicious nodes that can disrupt the localization process, leading to erroneous positioning and degraded network functionality. To address this challenge, we propose the security-aware localization using bat-optimized malicious anchor prediction (BO-MAP) algorithm.

View Article and Find Full Text PDF

(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!