Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1.

J Bacteriol

School of Biotechnology and Biomolecular Sciences, Centre for Marine Biofouling and Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia.

Published: February 2004

Serratia liquefaciens MG1 contains an N-acylhomoserine lactone-mediated quorum-sensing system that is known to regulate swarming motility colonization. In this study, we describe for S. liquefaciens MG1 the development of a novel biofilm consisting of cell aggregates and differentiated cell types, such as cell chains and long filamentous cells. Furthermore, quorum sensing is shown to be crucial for normal biofilm development and for elaborate differentiation. A mutant of S. liquefaciens MG1 that was incapable of synthesizing extracellular signal formed a thin and nonmature biofilm lacking cell aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine-tuning the formation of cell aggregates at a specific point in biofilm development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321472PMC
http://dx.doi.org/10.1128/JB.186.3.692-698.2004DOI Listing

Publication Analysis

Top Keywords

biofilm development
16
liquefaciens mg1
16
cell aggregates
12
serratia liquefaciens
8
aggregates differentiated
8
differentiated cell
8
cell chains
8
biofilm
7
cell
6
development
5

Similar Publications

Detection and Treatment with Peptide Power: A New Weapon Against Bacterial Biofilms.

ACS Biomater Sci Eng

January 2025

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China.

Bacterial biofilms, complex microbial communities encased in a protective extracellular matrix, pose a significant threat to public health due to their inherent antibiotic resistance. This review explores the potential of peptides, particularly antimicrobial peptides (AMPs), as innovative tools to combat biofilm-related infections. AMPs, characterized by their potent antimicrobial activity and tissue permeability, offer a promising approach to overcome the challenges posed by biofilms.

View Article and Find Full Text PDF

a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.

View Article and Find Full Text PDF

A point mutation in a like gene in enhances the anticorrosion activity.

Appl Environ Microbiol

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

Background: d-Tryptophan is recognised for its unique physiological properties. In this study, we aimed to explore the dynamic trends and emerging topics in d-tryptophan research to offer fresh perspectives for future studies.

Methods: Employing bibliometric analysis, we examined the literature on d-tryptophan indexed in the Web of Science Core Collection from January 1987 to December 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!