A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Angiogenic acceleration of Neu induced mammary tumor progression and metastasis. | LitMetric

AI Article Synopsis

  • The Neu gene (HER2) is linked to breast cancer and was studied in a mouse model to assess the role of increased angiogenic signaling.
  • Transgenic mice expressing higher levels of vascular endothelial growth factor (VEGF) showed normal mammary development but, when combined with the NeuYD oncogene, exhibited accelerated tumor growth, decreasing the time to tumor appearance significantly.
  • The study found that the enhanced vascularization in tumors was associated with changes in cell organization and indicated a unique mechanism of metastasis that does not rely on traditional invasion pathways.

Article Abstract

The Neu (ErbB2, HER2) member of the epidermal growth factor receptor family is implicated in many human breast cancers. We have tested the importance of increased angiogenic signaling in the NeuYD [mouse mammary tumor virus (MMTV)-Neu(ndl)-YD5] mammary tumor model. Transgenic mice expressing vascular endothelial growth factor (VEGF)(164) from the MMTV promoter were generated. These mice expressed VEGF(164) RNA and protein at 20- to 40-fold higher levels throughout mammary gland development but exhibited normal mammary gland development and function. However, in combination with the NeuYD oncogene, VEGF(164) expression resulted in increased vascularization of hyperplastic mammary epithelium and dramatic acceleration of tumor appearance from 111 to 51 days. Gene expression profiling also indicated that the VEGF-accelerated tumors were substantially more vascularized and less hypoxic. The preferential vascularization of early hyperplastic portions of mammary epithelia in NeuYD;MMTV-VEGF animals was associated with NeuYD RNA expression, disorganization of the tight junctions, and overlapping transgenic VEGF expression. NeuYD;MMTV-VEGF(164) bigenic, tumor-bearing animals resulted in an average of 10 tumor cell colonies/lung lodged within vascular spaces. No similar lung colonies were found in control NeuYD mice with similar tumor burdens. Overall, these results demonstrate the angiogenic restriction of early hyperplastic mammary lesions. They also reinforce in vivo the importance of activated Neu in causing disorganization of mammary luminal epithelial cell junctions and provide support for an invasion-independent mechanism of metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.can-03-1944DOI Listing

Publication Analysis

Top Keywords

mammary tumor
12
mammary
9
growth factor
8
mammary gland
8
gland development
8
hyperplastic mammary
8
early hyperplastic
8
tumor
6
angiogenic acceleration
4
acceleration neu
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!