This work describes a biophysical model of the initial stages of vertebrate olfactory system containing structures representing the olfactory epithelium and bulb. Its main novelty is the introduction of gap junctions connecting neurons both in the epithelium and bulb, and of biologically detailed dendrodendritic synapses between granule and mitral cells in the bulb. The model was used to simulate the effect of an odor presentation on the neural activity pattern in the epithelium and bulb. During the time for which an odor is presented with a constant concentration, there are spatiotemporal patterns in the epithelium and bulb generated by the couplings due to the gap junctions and/or dendrodendritic synapses. A study varying the strength of the gap junction coupling shows that the spatiotemporal patterns, both in the epithelium and bulb, are dependent of the coupling strength. It is also shown that the olfactory bulb's spatiotemporal pattern depends on the existence of the dendrodendritic connections between mitral and granule cells. If these spatiotemporal patterns really exist in the early processing stages of the olfactory system they may be used for odor coding and the gap junctions and dendrodendritic synapses might have a role on it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2003.08.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!