Reactivity of flavonoids with 1-hydroxyethyl radical: a gamma-radiolysis study.

Biochim Biophys Acta

UPRES EA 1085, Biomolécules et Cibles Cellulaires Tumorales Laboratoire de Biophysique, Faculté de Pharmacie, Equipe Biomolecules 2 rue du Dr. Marcland, 87025 Limoges Cedex, France.

Published: January 2004

We have investigated the reactivity between 11 flavonoids and 1-hydroxyethyl radical (HER). HER was recently implicated in many liver injuries induced by ethanol intoxication. In this study, HER was generated by radiolysis; due to its reaction rate, HER is well known to be responsible for solute degradation in irradiated ethanol. Flavonoid ethanol solutions were irradiated with gamma-rays and the flavonoid degradation was followed by HLPC. We observed the degradation of flavonols while all other flavonoids (flavones, flavanones, dihydroflavonols, catechins) were not degraded after irradiation. The major radiolysis products were identified by NMR and LC-MS and we concluded that flavonols were essentially transformed into depsides. We proposed a reactivity mechanism between flavonols and HER. In a first step, H-transfer occurred from the 3-OH group to HER. Afterwards, C-ring opening occurred due to the presence of the 2,3-double bond in flavonols. Finally, we calculated the reaction constants in order to evaluate the antioxidant activity of flavonols against HER and to compare it with reference compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2003.10.010DOI Listing

Publication Analysis

Top Keywords

reactivity flavonoids
8
flavonoids 1-hydroxyethyl
8
1-hydroxyethyl radical
8
flavonols
5
radical gamma-radiolysis
4
gamma-radiolysis study
4
study investigated
4
investigated reactivity
4
radical implicated
4
implicated liver
4

Similar Publications

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.

Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Comparing Hydrolysable and Condensed Tannins for Tannin Protein-Based Foams.

Polymers (Basel)

January 2025

Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell'Università 16, 35020 Padua, Italy.

Tannin-based foams have gained attention as a potential bio-based alternative to conventional synthetic foams. Traditionally, namely condensed tannins (CT) have been used, leaving the potential of hydrolysable tannins (HT) largely unexplored. This study compared the performance of chestnut (HT) and quebracho (CT) in tannin-protein-based foams at different tannin ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!