High molecular weight (Mw) chitosan (CS) solutions have already been proposed as vehicles for nasal immunization. The aim of the present work was to investigate the potential utility of low Mw CS in the form of nanoparticles as new long-term nasal vaccine delivery vehicles. For this purpose, CS of low Mws (23 and 38 kDa) was obtained previously by a depolymerization process of the commercially available CS (70 kDa). Tetanus toxoid (TT), used as a model antigen, was entrapped within CS nanoparticles by an ionic cross-linking technique. TT-loaded nanoparticles were first characterized for their size, electrical charge, loading efficiency and in vitro release of antigenically active toxoid. The nanoparticles were then administered intranasally to conscious mice in order to study their feasibility as vaccine carriers. CS nanoparticles were also labeled with FITC-BSA and their interaction with the rat nasal mucosa examined by confocal laser scanning microcopy (CLSM). Irrespective of the CS Mw, the nanoparticles were in the 350 nm size range, and exhibited a positive electrical charge (+40 mV) and associated TT quite efficiently (loading efficiency: 50-60%). In vitro release studies showed an initial burst followed by an extended release of antigenically active toxoid. Following intranasal administration, TT-loaded nanoparticles elicited an increasing and long-lasting humoral immune response (IgG concentrations) as compared to the fluid vaccine. Similarly, the mucosal response (IgA levels) at 6 months post-administration of TT-loaded CS nanoparticles was significantly higher than that obtained for the fluid vaccine. The CLSM images indicated that CS nanoparticles can cross the nasal epithelia and, hence, transport the associated antigen. Interestingly, the ability of these nanoparticles to provide improved access to the associated antigen to the immune system was not significantly affected by the CS Mw. Indeed, high and long-lasting responses could be obtained using low Mw CS molecules. Furthermore, the response was not influenced by the CS dose (70-200 microg), achieving a significant response for a very low CS dose. In conclusion, nanoparticles made of low Mw CS are promising carriers for nasal vaccine delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2003.09.006DOI Listing

Publication Analysis

Top Keywords

nanoparticles
12
nasal vaccine
12
vaccine delivery
12
tt-loaded nanoparticles
12
molecular weight
8
weight chitosan
8
carriers nasal
8
electrical charge
8
loading efficiency
8
vitro release
8

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!