Pancreatic enzymes in the gut contributing to lung injury after trauma/hemorrhagic shock.

Chin J Traumatol

Department of General Surgery, Southern Hospital, First Military Medical University, Guangzhou 510515, China.

Published: February 2004

Objective: To examine whether pancreatic proteolytic enzymes involve in lung injury induced by trauma/hemorrhagic shock (T/HS).

Methods: Male Sprague-Dawley rats received intraluminal or intravenous pancreatic serine protease inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate (ANGD) during laparotomy (trauma), and were subjected to 90 minutes of T/HS or trauma-sham shock (T/SS). Degree of lung injury was assessed 3 hours after resuscitation with Ringer's lactate solution.

Results: Lung permeability, pulmonary myeloperoxidase levels and the ratio of bronchoalveolar lavage fluid protein to plasma protein increased after T/HS, and significantly decreased in intraluminal-ANGD treated but not in intravenous-ANGD treated rats. Histological analysis demonstrated fewer injured villi in the intraluminal-ANGD treated rats compared with those in the control rats. Linear regression analysis revealed that the percentage of injured ileal mucosal villi directly related to pulmonary polymorphic neutrophil sequestration and lung permeability to Evans blue dye.

Conclusions: Pancreatic proteolytic enzymes in the ischemic gut may be important toxic factors contributing to lung injury after T/HS.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lung injury
16
contributing lung
8
trauma/hemorrhagic shock
8
pancreatic proteolytic
8
proteolytic enzymes
8
lung permeability
8
intraluminal-angd treated
8
treated rats
8
lung
6
pancreatic
4

Similar Publications

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis.

Front Immunol

December 2024

Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!