Three protein factors IF1, IF2 and IF3 are involved in the initiation of translation in prokaryotes. No clear function has been assigned to the smallest of these three factors, IF1. Therefore, to investigate the role of this protein in the initiation process in Escherichia coli we have mutated the corresponding gene infA. Because IF1 is essential for cell viability and no mutant selection has so far been described, the infA gene in a plasmid was mutated by site-directed mutagenesis in a strain with a chromosomal infA+ gene, followed by deletion of this infA+ gene. Using this approach, the six arginine residues of IF1 were altered to leucine or aspartate. Another set of plasmid-encoded IF1 mutants with a cold-sensitive phenotype was collected using localized random mutagenesis. All mutants with a mutated infA gene on a plasmid and a deletion of the chromosomal infA copy were viable, except for an R65D alteration. Differences in growth phenotypes of the mutants were observed in both minimal and rich media. Some of the mutated infA genes were successfully recombined into the chromosome thereby replacing the wild-type infA+ allele. Several of these recombinants showed reduced growth rate and a partial cold-sensitive phenotype. This paper presents a collection of IF1 mutants designed for in vivo and in vitro studies on the function of IF1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1033.2003.03954.x | DOI Listing |
J Biol Eng
December 2024
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Background: Manipulating the gene expression is the key strategy to optimize the metabolic flux. Not only transcription, translation, and post-translation level control, but also the dynamic plasmid copy number (PCN) control has been studied. The dynamic PCN control systems that have been developed to date are based on the understanding of origin replication mechanisms, which limits their application to specific origins of replication and requires the use of antibiotics for plasmid maintenance.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602.
The production of energy in the form of ATP by the mitochondrial ATP synthase must be tightly controlled. One well-conserved form of regulation is mediated via ATPase inhibitory factor 1 (IF1), which governs ATP synthase activity and gene expression patterns through a cytoprotective process known as mitohormesis. In apicomplexans, the processes regulating ATP synthase activity are not fully elucidated.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Knowledge of B cell epitopes is critical to vaccine design, diagnostics, and therapeutics. As experimental validation for epitopes is time-consuming and costly, many in silico tools have been developed to computationally predict the B cell epitopes. While most methods show poor performance, deep learning methods in recent years have shown promising results.
View Article and Find Full Text PDFBladder Cancer
October 2024
Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC) patients require long-term surveillance with cystoscopies, cytology and upper tract imaging. Previously, we developed a genomic urine assay for surveillance of HR-NMIBC patients with high sensitivity and anticipatory value.
Objective: We aimed to validate the performance of the assay in an unselected prospectively collected cohort of HR-NMIBC patients under surveillance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!