Non-enzymatic accumulation of advanced glycation end-products (AGE) is to some extent a physiologic consequence of tissue aging. On the other hand, circulating AGE and tissue deposits mark the course of diabetes mellitus as well as a variety of other vascular or degenerative diseases. AGE generation is paralleled by oxidative damage and lipid peroxidation within target tissue, with features of inflammation through the involvement of monocytes/macrophages expressing receptors for glycated macromolecules. Over the past 15 years, a wealth of data concerning the pharmacology of AGE have been gathered through animal and human investigations, targeting their likely contribution to the progression of diabetic and non-diabetic vascular damage. Several agents have been shown to interfere with the formation of AGE or AGE precursors, bind to tissue receptors, or promote breakdown of deposits. The first and most studied inhibitor, aminoguanidine, has shown extensive beneficial effects in experimental models of diabetic vascular damage, recently entering phase I-III clinical investigation. Newer anti-AGE agents include pyridoxamine and the so-called 'amadorins', cross-link breakers, AGE binders and receptor antagonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00129784-200303050-00002 | DOI Listing |
Endocrinol Diabetes Metab
January 2025
Department of Endocrinology and Metabolism, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland. Electronic address:
Vitamin D plays multiple roles in the body. Recently, there has been an increase in its popularity and growing interest in vitamin D supplementation. However, the mechanisms of vitamin D action have not yet been sufficiently explored.
View Article and Find Full Text PDFJBMR Plus
February 2025
Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
Advanced glycation end products (AGEs) accumulate in various tissues, including bone, due to aging and conditions like diabetes mellitus. To investigate the effects of AGEs on bone material quality and biomechanical properties, an study utilizing human tibial cortex, sectioned into 90 beams, and randomly assigned to three mechanical test groups was performed. Each test group included ribose ( = 0.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning Province, China.
Amyloid-beta clearance plays a key role In the pathogenesis of Alzheimer's disease. However, the variation in functional proteins involved in amyloid-beta clearance and their correlation with amyloid-beta levels remain unclear. In this study, we conducted meta-analyses and a systematic review using studies from the PubMed, Embase, Web of Science, and Cochrane Library databases, including journal articles published from inception to June 30, 2023.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!