Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase.

Pest Manag Sci

Institut National de la Recherche Agronomique, UMR Biologie et Gestion des Adventices, BP 86510, 21065 Dijon, France.

Published: January 2004

We have investigated the process of evolution of target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase (ACCase) in nine French populations of black-grass (Alopecurus myosuroides Huds). To date, two different ACCase resistant alleles are known. One contains an isoleucine-to-leucine substitution at position 1781, the second contains an isoleucine-to-asparagine substitution at position 2041. Using phylogenetic analysis of ACCase sequences, we showed that 1781Leu ACCase alleles evolved from four independent origins in the nine black-grass populations studied, while 2041Asn ACCase alleles evolved from six independent origins. No geographical structure of black-grass populations was revealed. This implies that these populations, although geographically distant, are, or have until recently been, connected by gene flows. Comparison of biological data obtained from herbicide sensitivity bioassay and molecular data showed that distinct resistance mechanisms often exist in a single black-grass population. Accumulation of different resistance mechanisms in a single plant was also demonstrated. We conclude that large-scale evolution of resistance to herbicides in black-grass is a complex phenomenon, resulting from the independent selection of various resistance mechanisms in local black-grass populations undergoing contrasted herbicide and agronomical selection pressures, and connected by gene flows whose parameters remain to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.778DOI Listing

Publication Analysis

Top Keywords

resistance herbicides
12
black-grass populations
12
resistance mechanisms
12
origins black-grass
8
black-grass alopecurus
8
alopecurus myosuroides
8
myosuroides huds
8
target-site-based resistance
8
herbicides inhibiting
8
inhibiting acetyl-coa
8

Similar Publications

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

The interaction between plants and microorganisms plays a major role in plant growth promotion and disease management. While most microorganisms directly influence plant health, some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic fungi are diverse, easily localized, and have long-lasting effects on insect pests.

View Article and Find Full Text PDF

Evaluation of Fifteen 5,6-Dihydrotetrazolo[1,5-]quinazolines Against : Integrating In Vitro Studies, Molecular Docking, QSAR, and In Silico Toxicity Assessments.

J Fungi (Basel)

November 2024

Department of Biosciences and Biotechnologies, Graduate School of Bioresources and Bioenvironment Sciences, Kyushu University, 744 W5-674, Motooka Nishi-ku, Fukuoka 819-0395, Japan.

(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.

View Article and Find Full Text PDF

This research presents an innovative genetic transformation protocol for marigolds ( L.), a species of great significance in floriculture, impacting both yield and quality. The study introduces seed priming technology as a novel approach and evaluates its effect on the germination rate.

View Article and Find Full Text PDF

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!