In previous studies, insulin-like growth factor-I (IGF-I) inhibited glucocorticoid-induced muscle protein breakdown, but the intracellular mechanisms of this effect of IGF-I are not well understood. The purpose of the present study was to test the hypothesis that IGF-I inhibits multiple proteolytic pathways in dexamethasone-treated cultured L6 myotubes. Myotubes were treated with 1 microM dexamethasone for 6 hours in the absence or presence of 0.1 microg/ml of IGF-I. Protein degradation was determined by measuring the release of trichloroacetic acid-soluble radioactivity from proteins prelabeled with 3H-tyrosine. The contribution of lysosomal, proteasomal-dependent, and calpain-dependent proteolysis to the inhibitory effect of IGF-I on protein degradation was assessed by using inhibitors of the individual proteolytic pathways (methylamine, beta-lactone, and E64, respectively). In addition, the influence of IGF-I on cathepsin B, proteasome, and calpain activities was determined. Treatment of L6 myotubes with dexamethasone resulted in an approximately 20% increase in protein degradation. This effect of dexamethasone was completely blocked by IGF-I. When the different protease inhibitors were used, results showed that IGF-I inhibited lysosomal, proteasomal-dependent, and calpain-dependent proteolysis by 70, 44, and 41%, respectively. Additionally, IGF-I blocked the dexamethasone-induced increase in cathepsin B, proteasome, and calpain activities. The present results suggest that IGF-I inhibits glucocorticoid-induced muscle proteolysis by blocking multiple proteolytic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.BCR.0000105100.44745.36 | DOI Listing |
Intensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFMol Cancer Res
January 2025
Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional corepressors, SMXL degradation initiates changes in gene expression.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Université de Caen Normandie, CERMN UR4258, Boulevard Becquerel, 14000 Caen, France.
The disruption of proteostasis provides a favourable context for the emergence of therapeutic innovations, in particular by exploiting technologies such as the PROTAC (Proteolysis Targeting Chimera) approach. These technologies aim to selectively target proteins involved in various diseases, including cancer and neurodegenerative diseases, by inducing their specific degradation via the ubiquitin-proteasome system. The PROTAC approach opens new opportunities for restoring altered protein homeostasis and modulating the pathological consequences of proteostasis deregulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!