The interface between the nutritional environment and cellular/genetic processes is being referred to as "nutrigenomics." Nutrigenomics seeks to provide a molecular genetic understanding for how common dietary chemicals (i.e., nutrition) affect health by altering the expression and/or structure of an individual's genetic makeup. The fundamental concepts of the field are that the progression from a healthy phenotype to a chronic disease phenotype must occur by changes in gene expression or by differences in activities of proteins and enzymes and that dietary chemicals directly or indirectly regulate the expression of genomic information. We present a conceptual basis and specific examples for this new branch of genomic research that focuses on the tenets of nutritional genomics: 1) common dietary chemicals act on the human genome, either directly or indirectly, to alter gene expression or structure; 2) under certain circumstances and in some individuals, diet can be a serious risk factor for a number of diseases; 3) some diet-regulated genes (and their normal, common variants) are likely to play a role in the onset, incidence, progression, and/or severity of chronic diseases; 4) the degree to which diet influences the balance between healthy and disease states may depend on an individual's genetic makeup; and 5) dietary intervention based on knowledge of nutritional requirement, nutritional status, and genotype (i.e., "individualized nutrition") can be used to prevent, mitigate, or cure chronic disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/physiolgenomics.00107.2003 | DOI Listing |
Front Pharmacol
January 2025
Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
Introduction: Extracts from the rhizome of the traditional Chinese medicinal plant (CY) mediate a number of biologic effects that are associated with its content of isoquinoline alkaloids. CY alkaloids have shown analgesic, cardioprotective, and anti-addictive effects in animal models of disease. Since CY alkaloids are available to consumers as dietary supplements we analyzed the content of alkaloids in 14 products including open powders, capsules, and liquid formulations, capturing a majority of the products available online in the US.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Henkel AG & Co KGaA, Düsseldorf, Germany.
The assessment of humans indirectly exposed to chemicals via the environment (HvE) is an assessment element of the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation. The European Union System for the Evaluation of Substances (EUSES) is the default screening tool, aimed at prioritizing chemicals for further refinement/higher tier assessment. This review summarizes the approach used in EUSES, evaluates the state of the science in human exposure modeling via the environment, and identifies areas for further research to strengthen the confidence and applicability of EUSES for assessing HvE.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada.
Selenium (Se) is a naturally occurring metalloid in soils and rocks that is released by weathering processes; it is also enriched by some anthropogenic activities, including mining and agriculture. The mechanism of Se aquatic toxicity has been understood for several decades; at elevated concentrations, dietary Se can accumulate in maternal tissues of fish and birds, become deposited into their eggs, and can potentially result in impaired embryological development. North American environmental regulations have acknowledged differences in species sensitivity and variation among aquatic environments (i.
View Article and Find Full Text PDFHepatol Commun
February 2025
Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!