Lewis (LEW) and Fischer 344 (F344) rat strains have been reported to differ in their sensitivity to the rewarding and aversive effects of both cocaine and morphine. Specifically, LEW rats self-administer morphine and cocaine to a greater extent than F344 rats, while LEW (compared to F344) rats are more sensitive to the aversive effects of cocaine but less sensitive to the aversive effects of morphine. Consistent with assessments of the rewarding effects of morphine and cocaine in these two strains, LEW rats have lower basal, and generally higher drug-induced, activity in brain regions associated with reward. Although the brain areas that mediate the aversive effects of drugs are becoming better defined, no studies have compared the activation of these areas by aversion-inducing drugs in the LEW and F344 strains. As such, the relationship between the ability of drugs to activate these aversion-associated brain areas and to induce a conditioned taste aversion (CTA) in these strains is unknown. To explore this relationship, LEW and F344 rats were injected with saline or doses of morphine or cocaine (32 mg/kg for both drugs) that have been shown to generate differential taste aversion learning in these strains. All animals were subsequently tested for c-Fos expression in areas of the brain associated with aversion learning (the lateral and medial parabrachial nucleus, intermediate and caudal nucleus tractus solitarius and area postrema), reward (the shell of the nucleus accumbens) and locomotion (the core of the nucleus accumbens and the caudate putamen). The present results indicated that patterns of morphine- and cocaine-induced c-Fos within CTA-associated, but not reward- or locomotor-associated, brain regions paralleled the differential behavioral sensitivities of LEW and F344 rats to these drugs within CTA learning. Analyses with other drugs that do and do not induce aversions differentially would further assess the role of these brain areas in aversion learning, in general, and in strain-dependent differences, in particular.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2003.11.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!