Purpose: To develop and evaluate an oral delivery system for salmon calcitonin.
Methods: 2-Iminothiolane was covalently bound to chitosan in order to improve the mucoadhesive and cohesive properties of the polymer. The resulting chitosan-TBA conjugate (chitosan-4-thiobutylamidine conjugate) was homogenized with salmon calcitonin. mannitol, and a chitosan-Bowman-Birk inhibitor conjugate and a chitosan-elastatinal conjugate (6.75 + 0.25 + 1 + 1 + 1). Optionally 0.5% (m/m) reduced glutathione. used as permeation mediator, was added. Each mixture was compressed to 2 mg microtablets and enteric coated with a polymethacrylate. Biofeedback studies were performed in rats by oral administration of the delivery system and determination of the decrease in plasma calcium level as a function of time.
Results: Test formulations led to a significant (p < 0.005) decrease in the plasma calcium level of the dosed animals in comparison to control tablets being based on unmodified chitosan. The addition of glutathione in the tablets led to a further improvement in the oral bioavailability of salmon calcitonin with an earlier onset of action and a decrease in the calcium level of about 10% for at least 10 h.
Conclusions: The combination of mucoadhesive thiolated chitosan, chitosan-enzyme-inhibitor conjugates and the permeation mediator glutathione seems to represent a promising strategy for the oral delivery of salmon calcitonin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:pham.0000008047.82334.7d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!