Purpose: The aim of the study was to investigate the effect of different concentrations of polyethylene glycol 400 (PEG 400) on liquid transit through, and ranitidine absorption from, the gastrointestinal tract.
Methods: Six healthy male volunteers received, on four separate occasions, 150 mL water containing 150 mg ranitidine and either 0 (control), 1,2.5, or 5 g PEG 400. The solutions were radiolabeled with technetium-99m to allow their gastrointestinal transit to be followed using a gamma camera. Urine samples were collected over a 24-h period to assess the amount of ranitidine excreted and hence absorbed.
Results: No significant differences in gastric emptying were noted between the four solutions. In contrast, the presence of 1, 2.5, and 5 g PEG 400 reduced the mean small intestinal transit times of the solutions by 9, 20, and 23%, respectively, against the control. In terms of drug absorption, the mean cumulative amount of ranitidine excreted was reduced by 38% in the presence of both 2.5 and 5 g PEG 400, although it was significantly increased by 41% in the presence of 1 g PEG 400.
Conclusions: The results show that low concentrations of PEG 400 enhance the absorption of ranitidine possibly via modulation of intestinal permeability, while high concentrations have a detrimental effect on ranitidine absorption presumably via a reduction in the small intestinal transit time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:pham.0000008046.64409.bd | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Hexaarylbiimidazole (HABI) molecules have awakened a broad interest in photo-processing, super-resolution imaging, photoinduced self-healing materials, and photomechanical hydrogels due to their excellent photosensitivity and photo-induced cleavage properties. In this work, a novel photoswitchable branched polyurethanes (BPU), which are synthesized by copolymerizing HABI with glycerol, isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), is designed. 7-Diethylamino-4-methylcoumarin (DMCO) is introduced as a radical quencher, which can not only avoid the hydroxyl interfering from conventional radical scavengers during the polymerization process but also promote efficient quenching of TPIR radicals.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
bioRxiv
January 2025
Departments of Integrative Physiology and Neuroscience, Pullman, WA, USA.
The legalization of cannabis in several states across the US has increased the need to better understand its effects on the body, brain, and behavior, particularly in different populations. Rodent models are particularly valuable in this respect because they provide precise control over external variables. Previous rodent studies have found age and sex differences in response to injected Δ-tetrahydrocannabinol (THC), the major psychoactive component of cannabis.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!