Shi Yan Sheng Wu Xue Bao
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agri-biotechnology Research Center, Shanghai Academy of Agricultural Science, Shanghai 201106, China.
Published: December 2003
The tomato fruit-specific promoter 2A11 was amplified from tomato genomic DNA using PCR techniques. Total RNA was isolated from ripen fruit of tomato, then ACC oxidase gene and ACC synthase gene were obtained using reverse-transcription polymerase chain reaction. The fusion encoding ACC oxidase and ACC synthase gene was obtained through ACC oxidase gene and ACC synthase gene ligation. The fusion gene was then inserted into a plant binary vector pYPX145 in an inverted orientation. Finally, the binary plant expression vector pOSACC was constructed in which the double-antisense fusion gene was controlled by fruit-specific 2A11 promoter. By using hypocotyls and cotyledon petioles as explants, the unit of double-antisense fusion gene was successfully introduced into tomato (Lycopersicon esculentum Mill) cultivar "Hezuo 903" by Agrobacterium tumefaciens-mediated transformation. 105 transgenic plants were obtained through 200 mg/L kanamycin selection and GUS assay. Two lines of DR-1 and DR-2 were obtained through selecting the characteristics of prolonged shelf life and agriculture. The transgenic plants showed the characteristics of prolonged shelf life over 50 d. The amount of ethylene released from DR-1 and DR-2 fruits were reduced significantly to about 9.5% of that released by non-transformed controls.
Download full-text PDF |
Source |
---|
Plant J
March 2025
The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand.
EIN3/EIL (ethylene-insensitive 3/EIN3-like) transcription factors are positive downstream transcriptional regulators of ethylene signalling. In apple (Malus × domestica), a small family of MdEIL genes was identified, with four expressed in fruit. Transgenic lines were generated to manipulate MdEIL1 expression, and fruits were sampled at harvest maturity and after cold treatment.
View Article and Find Full Text PDFJ Exp Bot
February 2025
Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, E-31006 Spain.
The final steps of ethylene biosynthesis involve the consecutive activity of two enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). These enzymes are encoded by small gene families, which, in the case of legumes, have not been systematically characterized at the level of gene family membership or phylogenetic relationships. Moreover, the absence of consensus nomenclature complicates comparisons within the scientific literature, where authors are addressing the roles of these genes in planta.
View Article and Find Full Text PDFNat Synth
August 2024
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Due to the scarcity of C-F bond forming enzymatic activities in nature and the contrasting ubiquity of organofluorine moieties in bioactive compounds, developing new biocatalytic fluorination reactions represents a preeminent challenge in enzymology, biocatalysis, and synthetic biology. Additionally, catalytic asymmetric C(sp)-H fluorination remains a challenging problem facing synthetic chemists. Although many nonheme Fe halogenases have been discovered to promote C(sp)-H halogenation reactions, to date, efforts to convert these Fe halogenases to fluorinases have remained unsuccessful.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.
The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.