It is well established that manipulation of the sensory environment can significantly alter central auditory system development. For example, congenitally deaf white cats exhibit synaptic alterations in the cochlear nucleus distinct from age-matched, normal hearing controls. The large, axosomatic endings of auditory nerve fibers, called endbulbs of Held, display reduced size and branching, loss of synaptic vesicles, and a hypertrophy of the associated postsynaptic densities on the target spherical bushy cells. Such alterations, however, could arise from the cat's genetic syndrome rather than from deafness. In order to examine further the role of hearing on synapse development, we have studied endbulbs of Held in the shaker-2 ( sh2 ) mouse. These mice carry a point mutation on chromosome 11, affecting myosin 15 and producing abnormally short stereocilia in hair cells of the inner ear. The homozygous mutant mice are born deaf and develop perpetual circling behavior, although receptor cells and primary neurons remain intact at least for the initial 100 days of postnatal life. Endbulbs of Held in 7-month old, deaf sh2 mice exhibited fewer synaptic vesicles in the presynaptic ending, the loss of intercellular cisternae, and a hypertrophy of associated postsynaptic densities. On average, postsynaptic density area for sh2 endbulbs was 0.23 +/- 0.19 microm(2) compared to 0.07 +/- 0.04 microm(2) ( p < 0.001) for age-matched, hearing littermates. These changes at the endbulb synapse in sh2 mice resemble those of the congenitally deaf white cat and are consistent with the idea that they represent a generalized response to deafness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/B:NEUR.0000010082.99874.14 | DOI Listing |
J Physiol
December 2024
Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
Front Mol Neurosci
February 2024
Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
Introduction: Recently developed fluorescent neurotransmitter indicators have enabled direct measurements of neurotransmitter in the synaptic cleft. Precise optical measurements of neurotransmitter release may be used to make inferences about presynaptic function independent of electrophysiological measurements.
Methods: Here, we express iGluSnFR, a genetically encoded glutamate reporter in mouse spiral ganglion neurons to compare electrophysiological and optical readouts of presynaptic function and short-term synaptic plasticity at the endbulb of Held synapse.
Elife
June 2023
Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, United States.
Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory nerve innervation and accurate surface areas of all postsynaptic compartments.
View Article and Find Full Text PDFJ Neurosci
August 2022
Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
Exposure to nontraumatic noise drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability ( ). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A.
View Article and Find Full Text PDFJ Neurosci
March 2022
Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!