The protein kinase C (PKC) isoenzyme superfamily represents a popular target in pharmacological interventions designed to elicit apoptosis directly in tumor cells or to potentiate the lethal effects of antineoplastic agents. Numerous observations support the clinical utility of PKC inhibition by experimental sphingolipid derivatives such as safingol. The present studies document the cytotoxicity and chemomodulatory capacity of phenethylisothiocyanate derivatives of sphinganine and sphingosine (PEITC-Sa and PEITC-So) in the human myeloid leukemia cell line HL-60. The biological actions of these novel derivatives were compared directly with those of the parent compounds sphinganine and sphingosine. Exposure to natural and modified sphingoid bases promoted extensive apoptotic cell death. The PEITC-sphingoid base derivatives exhibited higher cytotoxicity than their natural counterparts and were also distinctly superior to the clinically relevant sphingoid base analog safingol. In each instance, lethality was shown to correlate with inhibition of conventional and novel PKC isoforms and downstream loss of extracellular signal-regulated kinase (ERK)1/ERK2. The involvement of these signaling systems in potentiating the lethal actions of 1-(beta-D-arabinofuranosyl)cytosine (araC) was also examined with regard to the differential actions of PEITC-Sa and PEITC-So to that of the parent compounds as well as safingol. Exposure to araC alone rapidly increased PKC activity. In the presence of PEITC-Sa or PEITC-So, the therapeutic efficacy of araC increased markedly; moreover, potentiation was directly related to the loss of araC-stimulated PKC activity. These findings demonstrate that PEITC-substituted sphingoid base analogs exert potent antineoplastic effects in human leukemia cells. We suggest that these synthetic lipids represent potentially useful agents in the development of conventional PKC/novel PKC-directed chemotherapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.060665DOI Listing

Publication Analysis

Top Keywords

sphingoid base
12
peitc-sa peitc-so
12
cytotoxicity chemomodulatory
8
actions novel
8
base derivatives
8
leukemia cells
8
sphinganine sphingosine
8
parent compounds
8
pkc activity
8
derivatives
5

Similar Publications

Sphingoid Base Diversity.

Atherosclerosis

December 2024

Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland. Electronic address:

Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure.

View Article and Find Full Text PDF

Biological Importance of Complex Sphingolipids and Their Structural Diversity in Budding Yeast .

Int J Mol Sci

November 2024

Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.

Complex sphingolipids are components of eukaryotic biomembranes and are involved in various physiological functions. In addition, their synthetic intermediates and metabolites, such as ceramide, sphingoid long-chain base, and sphingoid long-chain base 1-phosphate, play important roles as signaling molecules that regulate intracellular signal transduction systems. Complex sphingolipids have a large number of structural variations, and this structural diversity is considered an important molecular basis for their various physiological functions.

View Article and Find Full Text PDF

Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate.

Microb Cell Fact

November 2024

Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea.

Background: Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost.

View Article and Find Full Text PDF

Structure of the yeast ceramide synthase.

Nat Struct Mol Biol

November 2024

Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany.

Ceramides are essential lipids involved in forming complex sphingolipids and acting as signaling molecules. They result from the N-acylation of a sphingoid base and a CoA-activated fatty acid, a reaction catalyzed by the ceramide synthase (CerS) family of enzymes. Yet, the precise structural details and catalytic mechanisms of CerSs have remained elusive.

View Article and Find Full Text PDF

Structure Revision of Halisphingosine A via Total Synthesis and Bioactivity Studies.

Angew Chem Int Ed Engl

December 2024

Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany.

Sphingoid bases are important bioactive lipids found in a variety of organisms, serving as the backbone of sphingolipids, which regulate essential physiological processes. Here we describe the total synthesis and structure revision of halisphingosine A, a sphingoid base initially isolated from marine sponges. To address inconsistencies in the NMR interpretation of this natural product, we developed a synthetic route involving a late-stage enantioselective Henry reaction that allows access to multiple stereoisomers of the proposed halisphingosine A core structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!