Hand-arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664844PMC
http://dx.doi.org/10.1113/jphysiol.2003.059899DOI Listing

Publication Analysis

Top Keywords

fluid oscillation
16
endothelial cells
12
erk1/2 phosphorylation
12
pulse cycle
12
temporal gradient
12
extracellular signal-regulated
8
signal-regulated kinase
8
human endothelial
8
cells exposed
8
transduction fluid
8

Similar Publications

In this research, the impact of differing densities and viscosities of two dissolving fluids on their mixing efficiency, as well as the effects of various excitation frequencies on the performance of the mixer, have been examined. For this purpose, a two-dimensional microchannel equipped with an oscillating circular cylinder was used, operating within a Strouhal number range of 0.1-0.

View Article and Find Full Text PDF

Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep.

Cell

January 2025

Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA. Electronic address:

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

Taylor's swimming sheet near a soft boundary.

Soft Matter

January 2025

Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.

In 1951, G. I. Taylor modeled swimming microorganisms by hypothesizing an infinite sheet in 2D moving in a viscous medium due to a wave passing through it.

View Article and Find Full Text PDF

Lymphatic system failures contribute to cardiovascular and various other diseases. A critical function of the lymphatic vascular system is the active pumping of fluid from the interstitium back into the blood circulation by periodic contractions of lymphatic muscle cells (LMCs) in the vessel walls. As in cardiac pacemaking, these periodic contractions can be interpreted as occurring due to linked pacemaker oscillations in the LMC membrane potential (M-clock) and calcium concentration (C-clock).

View Article and Find Full Text PDF

Purpose: Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood.

Methods: A CJL model was established using C57BL/6J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!