Mammalian spermiogenesis is a complex process occurring in a highly coordinated fashion within the seminiferous tubules. To elucidate the molecular mechanisms controlling haploid germ cell differentiation, we have isolated haploid germ cell- specific cDNA clones from a subtracted cDNA library of mouse testis. One of these cDNAs, Rosbin, is 3.2 kilobases (kb) long and has an open reading frame of 2385 nucleotides encoding a putative protein of 795 amino acid residues. A computer-mediated homology search revealed that it contained a domain similar to that of homeobox genes. Northern blot analysis revealed a 3.2-kb mRNA expressed exclusively in male germ cells. Transcription of the Rosbin gene was not observed in prepubertal testis but became detectable after Day 23. By Western blot analysis the protein encoded by this gene had a molecular mass of 89 kDa, expressing specifically in the testis and localized to the nucleus of stages IV-VIII haploid round spermatids, predominantly at stages VII-VIII of spermatogenesis. ROSBIN is associated with and is most likely phosphorylated by protein kinase A. We suggest that it plays an important role in transcriptional regulation in haploid germ cells.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.103.026096DOI Listing

Publication Analysis

Top Keywords

haploid germ
12
expressed exclusively
8
round spermatids
8
blot analysis
8
germ cells
8
rosbin
4
rosbin novel
4
novel homeobox-like
4
protein
4
homeobox-like protein
4

Similar Publications

Galectin-1 and galectin-3 in male reproduction - impact in health and disease.

Semin Immunopathol

January 2025

Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.

The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.

View Article and Find Full Text PDF

Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.

View Article and Find Full Text PDF

Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia.

Biol Direct

December 2024

Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.

Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.

View Article and Find Full Text PDF

Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.

View Article and Find Full Text PDF

Squamous cell carcinoma (SCC) of the ovary, an uncommon form of gynecologic cancer, typically originates from the malignant transformation of a pre-existing mature ovarian teratoma (MOT). However, due to its rarity, the molecular pathways driving its development are not well understood. To address this knowledge gap, we performed molecular inversion probe (MIP) array analysis and targeted sequencing of 275 cancer susceptibility genes on 11 ovarian SCC samples derived from MOTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!