This paper describes the development and validation of a commercially available radioimmunoassay (RIA) for the detection of fish insulin-like growth factor-I (IGF-I). The assay was developed using recombinant barramundi IGF-I as antigen and recombinant tuna IGF-I as radiolabelled tracer and standard. Assay sensitivity was 0.15 ng/ml, inter-assay variation was 16% (n = 9) and intra-assay variation was 3% (n = 10). Cross reactivity of less than 0.01% was found with salmon insulin, salmon IGF-II and barramundi IGF-II, less than 0.5% with human IGF-I and less than 1% with human IGF-II. Parallel dose-response inhibition curves were shown for barramundi (Lates calcarifer), coho salmon (Oncorhynchus kisutch), Southern Bluefin tuna (Thunnus maccoyii), tilapia (Oreochromis mossambicus), and seabream (Pagrus auratus) IGF-I. The assay was then used to measure stress related changes in different aquacultured fish species. Salt water acclimated Atlantic salmon smolts (Salmo salar) bathed for 2 h in fresh water showed significantly lower IGF-I concentrations than control smolts two days after the bath (53.1 compared to 32.1 ng/ml), with levels of IGF-I also lower in smolts exhibiting stunted growth (stunts). Capture and confinement of wild tuna in sea-cages resulted in a significant decrease in IGF-I levels (28 ng/ml) when compared to tuna captured and sampled immediately (48 ng/ml), but had recovered to starting levels after 3 weeks (43 ng/ml). Handling and isolation in silver perch (Bidyanus bidyanus) led to a gradual decline in IGF-I over a 12 h period (36-19 ng/ml) but showed signs of recovery by 24 h (24 ng/ml) and had recovered fully 72 h after treatment (40 ng/ml). A similar trial in black bream (Acanthopagrus butcherii) showed comparable results with IGF-I levels gradually decreasing (40-26 ng/ml) over 24 h, results that were mirrored by cortisol concentrations which increased during this time (1-26 ng/ml). In the studies presented here changes in IGF-I levels were not observed for at least 3 h after exposure to the stressor. We suggest this is due to the endocrine nature of IGF-I regulation and the clearance rate of IGF-I in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2003.10.002DOI Listing

Publication Analysis

Top Keywords

igf-i levels
16
igf-i
15
ng/ml
10
development validation
8
fish insulin-like
8
insulin-like growth
8
igf-i assay
8
ng/ml recovered
8
levels
6
validation radioimmunoassay
4

Similar Publications

Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation.

Int J Mol Sci

January 2025

Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

Differential Impact of Medical Therapies for Acromegaly on Glucose Metabolism.

Int J Mol Sci

January 2025

Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132 Genova, Italy.

Acromegaly is a rare endocrine disorder caused by excessive growth hormone (GH) production, due, in the vast majority of cases, to the presence of a GH-secreting pituitary tumour. The chronic elevation of GH and the resulting high circulating levels of insulin-like growth factor-1 (IGF-1) cause the characteristic tissue overgrowth and a number of associated comorbidities, including several metabolic changes, such as glucose intolerance and overt diabetes mellitus (DM). Elevated GH concentrations directly attenuate insulin signalling and stimulate lipolysis, decreasing glucose uptake in peripheral tissues, thus leading to the development of impaired glucose tolerance and DM.

View Article and Find Full Text PDF

Objective: To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.

Methods: Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (=18), while the control group received CPC treatment alone (=18).

View Article and Find Full Text PDF

Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.

Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!