Alternative splicing of the ovine CFTR gene.

Mamm Genome

Paediatric Molecular Genetics, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DS, UK.

Published: November 2003

Alternative splicing of the human CFTR gene was studied previously and shown not to generate functional CFTR-like chloride ion channels. However, it is possible that some of the alternatively spliced forms may encode CFTR proteins with different functions. The ovine CFTR gene is very similar to the human gene and has regulatory mechanisms in common. To evaluate whether the alternatively spliced forms of human CFTR are conserved in the sheep, the splice forms of the ovine CFTR gene were examined. A transcript lacking exon 9 was observed in the sheep, but unlike the human exon 9-transcript, it did not result from a polymorphic intron 8 splice acceptor site. Sheep CFTR transcripts lacking exon 17b were seen and have also been described in the human. Transcripts lacking 98 bp of the 5' end of exon 13, the whole of exon 13, and both exons 14b and 15 respectively were seen in sheep but have not been reported in human. Splice site donor and acceptor sequences were isolated, and alternative transcripts were shown to result from a combination of aberrant sites and competition of 5' splice donor sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-003-3013-1DOI Listing

Publication Analysis

Top Keywords

cftr gene
16
ovine cftr
12
lacking exon
12
alternative splicing
8
human cftr
8
alternatively spliced
8
spliced forms
8
transcripts lacking
8
cftr
7
human
6

Similar Publications

Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new method for concentrating highly branched poly(β-amino ester) (HPAEs)/DNA nanoparticles for gene therapy aimed at treating cystic fibrosis, addressing challenges related to the high formulation concentrations required for clinical applications.
  • Researchers optimized a formulation using various buffers and achieved concentration through ultrafiltration, which significantly outperformed lyophilization by providing a 24-fold increase.
  • The concentrated formulation was effective in restoring CFTR protein production in lung epithelial cells, demonstrating better results than existing transfection reagents, highlighting its potential for future preclinical testing and clinical use.
View Article and Find Full Text PDF

The chloride transporter-channel SLC26A9 is mediated by a reciprocal regulatory mechanism through the interaction between its cytoplasmic STAS domain and the R domain of CFTR. In vertebrate Slc26a9s, the STAS domain structures are interrupted by a disordered loop which is conserved in mammals but is variable in non-mammals. Despite the numerous studies involving the STAS domains in SLC26 proteins, the role of the disordered loop region has not been identified.

View Article and Find Full Text PDF

G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the progression of breast cancer and has emerged as a promising therapeutic target. However, while missense mutations in GPER1 have been detected in breast invasive carcinoma (BIC) samples, the resulting molecular, cellular and pharmacological changes remain unclear. The present study categorized BIC samples from The Cancer Genome Atlas database based on mutation information available in the cBioPortal database.

View Article and Find Full Text PDF

An update on multiple breath washout in children with cystic fibrosis.

Expert Rev Respir Med

December 2024

Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Introduction: Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane regulator (CFTR) gene, leading to progressive lung disease and systemic complications. Lung disease remains the primary cause of morbidity and mortality, making early detection of lung function decline crucial. The Lung Clearance Index (LCI), derived from the multiple breath washout (MBW) test, has emerged as a sensitive measure for identifying early airway disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!