At glutamatergic synapses, the scaffolding protein PSD95 links the neuronal isoform of nitric-oxide synthase (nNOS) to the N-methyl-d-aspartate (NMDA) receptor. Phosphorylation of nNOS at serine 847 (Ser(847)) by the calcium-calmodulin protein kinase II (CaMKII) inhibits nNOS activity, possibly by blocking the binding of Ca(2+)-CaM. Here we show that the NMDA mediates a novel bidirectional regulation of Ser(847) phosphorylation. nNOS phosphorylated at Ser(847) colocalizes with the NMDA receptor at spines of cultured hippocampal neurons. Treatment of neurons with 5 microm glutamate stimulated CaMKII phosphorylation of nNOS at Ser(847), whereas excitotoxic concentrations of glutamate, 100 and 500 microm, induced Ser(847)-PO(4) dephosphorylation by protein phosphatase 1. Strong NMDA receptor stimulation was likely to activate nNOS under these conditions because protein nitration to form nitrotyrosine, a marker of nNOS activity, correlated in individual neurons with Ser(847)-PO(4) dephosphorylation. Of particular note, stimulation with low glutamate that increased phosphorylation of nNOS at Ser(847) could be reversed by subsequent high glutamate treatment which induced dephosphorylation. The reversibility of NMDA receptor-induced phosphorylation at Ser(847) by different doses of glutamate suggests two mechanisms with opposite effects: 1). a time-dependent negative feedback induced by physiological concentrations of glutamate that limits nNOS activation and precludes the overproduction of NO; and 2). a pathological stimulation by high concentrations of glutamate that leads to unregulated nNOS activation and production of toxic levels of NO. These mechanisms may share pathways, respectively, with NMDA receptor-induced forms of synaptic plasticity and excitotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M311103200DOI Listing

Publication Analysis

Top Keywords

phosphorylation nnos
16
nmda receptor
12
concentrations glutamate
12
nnos
10
bidirectional regulation
8
nitric-oxide synthase
8
serine 847
8
nnos activity
8
nnos ser847
8
ser847-po4 dephosphorylation
8

Similar Publications

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Mapping of functional erectogenic nerves on the rat prostate.

J Sex Med

December 2024

The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.

Background: Preservation of erectogenic nerves during radical prostatectomy (RP) is hampered by limited understanding of their precise localization, due to their complex, intertwined paths, and the inherent individual variations across patients. Because erection utilizes a subset of cavernous nerves (CNs) that in response to sexual stimuli reveal phosphorylation of neuronal nitric oxide synthase (nNOS) on its stimulatory site Ser-1412, we hypothesized that delineation of nerves containing phosphorylated (P)-nNOS on Ser-1412 would establish the location of functional erectogenic nerves within the periprostatic region.

Aim: To identify the distribution and quantity of functional erection-relevant ([P-nNOS]-containing) nerves in the periprostatic area and discriminate them among the CNs distribution.

View Article and Find Full Text PDF

4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of Protein kinase B (PKB)/AKT nitration in myocardial ischemia and reperfusion injury (MIRI) and how resveratrol (RSV) may protect heart cells during this process.
  • The researchers used mouse models and H9c2 cell lines to analyze the effects of interventions like RSV and inhibitors on AKT nitration and cardiomyocyte apoptosis caused by ischemia.
  • Results showed that AKT nitration, which leads to reduced AKT activity and increased heart cell death, was decreased, and AKT phosphorylation increased when treated with RSV and other inhibitors, indicating RSV's potential protective effects against heart damage in MIRI.
View Article and Find Full Text PDF

Menopausal depression, often associated with hormonal fluctuations such as decreased estrogen levels, imposes significant mental health burdens. Despite the antidepressant biological properties of standardized rice bran supplement (RBS), its impact on menopausal depression and underlying mechanisms remains largely unexplored. In this study, we investigated the antidepressant effects of RBS in a mouse model of estrogen deficiency-induced depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!