Hepatic fibrosis is due to the increased synthesis and deposition of type I collagen. Acetaldehyde activates type I collagen promoters. Nuclear factor kappaB (NF-kappaB) was previously shown to inhibit expression of murine alpha(1)(I) and human alpha(2)(I) collagen promoters. The present study identifies binding of NF-kappaB, present in nuclear extracts of stellate cells, to a region between -553 and -537 of the murine alpha(2)(I) collagen promoter. The NF-kappaB (p65) expression vector inhibited promoter activity. Mutation of the promoter at the NF-kappaB-binding site increased basal promoter activity and abrogated the activating and inhibitory effects of transforming growth factor beta and tumor necrosis factor alpha, respectively, on promoter activity. Acetaldehyde increased IkappaB-alpha kinase activity and phosphorylated IkappaB-alpha, NF-kappaB nuclear protein, and its binding to the promoter. However, the activating effect of acetaldehyde was not affected by the mutation of the promoter. In conclusion, although acetaldehyde increases the binding of NF-kappaB to the murine alpha(2)(I) collagen promoter, this binding does not mediate the activating effect of acetaldehyde on promoter activity. The effects of acetaldehyde in increasing the translocation of NF-kappaB to the nucleus with increased DNA binding activity may be important in mediating the effects of acetaldehyde on other genes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M311499200DOI Listing

Publication Analysis

Top Keywords

alpha2i collagen
16
promoter activity
16
murine alpha2i
12
collagen promoter
12
promoter
10
nf-kappab-binding site
8
type collagen
8
collagen promoters
8
binding nf-kappab
8
nf-kappab nuclear
8

Similar Publications

The present study aims to summarize the current biomarker landscape in gynecological cancers (GCs) and incorporate bioinformatics analysis to highlight specific biological processes. The literature was retrieved from PubMed, Web of Science, Embase, Scopus, Ovid Medline, and Cochrane Library. The final search was conducted on December 7, 2022.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome (vEDS) arises from mutations in collagen-III, a major structural component of the extracellular matrix (ECM) in vascularized tissues, including blood vessels. Fibrillar collagens form a triple-helix that is characterized by a canonical (Gly-X-Y) sequence. The substitution of another amino acid for Gly within this conserved repeating sequence is associated with several hereditary connective tissue disorders, including vEDS.

View Article and Find Full Text PDF

The general molecular form of type I collagen is heterotrimer consisting of two α1(I) chains and one α2(I) chain. However, α111(I) homotrimer is rarely observed in vivo, especially in pathological tissues such as cancer. Here we utilized a previously developed LC-MS method that can accurately and sensitively quantitate α1(I) and α2(I) chains to distinguish type I collagen homotrimer from human placenta.

View Article and Find Full Text PDF

Pulmonary hypoplasia and respiratory failure are primary causes of death in patients with osteogenesis imperfecta (OI) type II. OI is a genetic skeletal disorder caused by pathogenic variants in genes encoding collagen type I. It is still unknown if the collagen defect also affects lung development and structure, causing lung hypoplasia in OI type II.

View Article and Find Full Text PDF

Unequal Impact of and Variants on Dentinogenesis Imperfecta.

J Dent Res

June 2023

Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, Brazil.

Dentinogenesis imperfecta (DI) is the main orodental manifestation of osteogenesis imperfecta (OI) caused by or heterozygous pathogenic variants. Its prevalence varies according to the studied population. Here, we report the molecular analysis of 81 patients with OI followed at reference centers in Brazil and France presenting or variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!