Cytosolic ascorbate peroxidase 1 (Apx1) is a key H(2)O(2) removal enzyme in plants. Microarray analysis of Apx1-deficient Arabidopsis plants revealed that the expression of two zinc finger proteins (Zat12 and Zat7) and a WRKY transcription factor (WRKY25) is elevated in knock-out Apx1 plants grown under controlled conditions. Because mutants lacking Apx1 accumulate H(2)O(2), we examined the correlation between H(2)O(2) and the expression of Zat12, Zat7, WRKY25, and Apx1. The expression of Zat12, Zat7, and WRKY25 was simultaneously elevated in cells in response to oxidative stress (i.e. H(2)O(2) or paraquat application), heat shock, or wounding. In contrast, light or osmotic stress did not enhance the expression of these putative transcription factors. All stresses tested enhanced the expression of Apx1. Transgenic plants expressing Zat12 or Zat7 could tolerate oxidative stress. In contrast, transgenic plants expressing WRKY25 could not. Although the expression of Zat12, Zat7, or WRKY25 in transgenic plants did not enhance the expression of Apx1 under controlled conditions, Zat12-deficient plants were unable to enhance the expression of Apx1, Zat7, or WRKY25 in response to H(2)O(2) or paraquat application. Zat12-deficient plants were also more sensitive than wild type plants to H(2)O(2) application as revealed by a higher level of H(2)O(2)-induced protein oxidation detected in these plants by protein blots. Our results suggest that Zat12 is an important component of the oxidative stress response signal transduction network of Arabidopsis required for Zat7, WRKY25, and Apx1 expression during oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M313350200DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
zat12 zat7
20
zat7 wrky25
20
expression zat12
12
enhance expression
12
expression apx1
12
transgenic plants
12
expression
10
plants
10
zinc finger
8

Similar Publications

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!