Signalling by integrin-mediated cell anchorage to extracellular matrix proteins is co-operative with other receptor-mediated signalling pathways to regulate cell adhesion, spreading, proliferation, survival, migration, differentiation and gene expression. It was observed that an anchorage-independent gastric carcinoma cell line (SNU16) became adherent on TGF-beta1 (transforming growth factor beta1) treatment. To understand how a signal cross-talk between integrin and TGF-beta1 pathways forms the basis for TGF-beta1 effects, cell adhesion and signalling activities were studied using an adherent subline (SNU16Ad, an adherent variant cell line derived from SNU16) derived from the SNU16 cells. SNU16 and SNU16Ad cells, but not integrin alpha5-expressing SNU16 cells, showed an increase in adhesion on extracellular matrix proteins after TGF-beta1 treatment. This increase was shown to be mediated by an integrin alpha3 subunit, which was up-regulated in adherent SNU16Ad cells and in TGF-beta1-treated SNU16 cells, compared with the parental SNU16 cells. After TGF-beta1 treatment of SNU16Ad cells on fibronectin, Tyr-416 phosphorylation of c-Src was increased, but Ras-GTP loading and ERK1/ERK2 (extracellular-signal-regulated kinases 1 and 2) activity were decreased, which showed a dependence on c-Src family kinase activity. Studies on adhesion and signalling activities using pharmacological inhibitors or by transient-transfection approaches showed that inhibition of ERK1/ERK2 activity increased TGF-beta1-mediated cell adhesion slightly, but not the basal cell adhesion significantly, and that c-Src family kinase activity and decrease in Ras/ERKs cascade activity were required for the TGF-beta1 effects. Altogether, the present study indicates that TGF-beta1 treatment causes anchorage-independent gastric carcinoma cells to adhere by an increase in integrin alpha3 level and a c-Src family kinase activity-dependent decrease in Ras/ERKs cascade activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224061 | PMC |
http://dx.doi.org/10.1042/BJ20031408 | DOI Listing |
Sci Rep
January 2025
Department of Sports Medical Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model.
View Article and Find Full Text PDFCell Discov
January 2025
Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, the Second Hospital of Hebei Medical University, Shijiazhuang050000, China.
To investigate the combined application of cytology, cell block histology and immunohistochemistry to improve the diagnostic accuracy of solid pancreatic lesions in endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) samples. The pathological data of EUS-FNA in 311 cases of solid pancreatic lesions submitted to the Second Hospital of Hebei Medical University, Shijiazhuang, China from May 2019 to September 2023 were retrospectively analyzed. The cases included pancreatic ductal adenocarcinoma (PDAC, 172 cases), solid pseudopapillary neoplasm (SPN, 12 cases), neuroendocrine tumors (PNET, 14 cases) and chronic pancreatitis (113 cases).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!