Acetohydroxy acid isomeroreductase catalyses a two-step reaction, an alkyl migration and a NADPH-dependent reduction, in the assembly of the carbon skeletons of branched-chain amino acids. Detailed investigations of acetohydroxy acid isomeroreductase aimed at elucidating the biosynthetic pathway of branched-chain amino acids and at designing new inhibitors of the enzyme having herbicidal potency have so far been conducted with the enzymes isolated from bacteria. To gain more information on a plant system, the gene encoding the mature acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) leaf chloroplasts has been used to transform Escherichia coli cells and to overexpress the enzyme. A rapid protocol is described that allows the preparation of large quantities of pure spinach chloroplast acetohydroxy acid isomeroreductase. Kinetic and structural properties of the plant enzyme expressed in Escherichia coli are compared with those reported in our previous studies on the native enzymes purified from spinach chloroplasts and with those reported for the corresponding enzymes isolated from Escherichia coli and Salmonella typhimurium. Both the plant and the bacterial enzymes obey an ordered mechanism in which NADPH binds first, followed by substrate (either 2-acetolactate or 2-aceto-2-hydroxybutyrate). Inhibition studies employing an inactive substrate analogue, 2-hydroxy-2-methyl-3-oxopentanoate, showed, however, that the binding of 2-hydroxy-2-methyl-3-oxopentanoate and NADPH occurs randomly, suggestive of some flexibility of the plant enzyme active site. The observed preference of the enzyme for 2-aceto-2-hydroxybutyrate over 2-acetolactate is discussed with regard to the contribution of acetohydroxy acid isomeroreductase activity in the partitioning between isoleucine and valine biosyntheses. Moreover, the kinetic properties of the chloroplast enzyme support the notion that biosynthesis of branched-chain amino acids in plants is controlled by light. As judged by analytical-ultracentrifugation and gel-filtration analyses the overexpressed plant enzyme is a dimer of identical subunits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131967 | PMC |
http://dx.doi.org/10.1042/bj2880865 | DOI Listing |
Bioorg Med Chem
December 2024
Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China. Electronic address:
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany.
Acetohydroxyacid synthase (AHAS, EC 2.2.1.
View Article and Find Full Text PDFACS Synth Biol
September 2024
College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
l-Valine, an essential amino acid, serves as a valuable compound in various industries. However, engineering strains with both high yield and purity are yet to be delivered for microbial l-valine production. We engineered a strain capable of highly efficient production of l-valine.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2024
Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Aflatoxins (AFs) are produced by fungi such as and and are one of the most toxic mycotoxins found in agricultural products and food. Aflatoxin contamination, which requires the control of , remains problematic because of the lack of effective strategies and the exploration of new compounds that can inhibit growth and mycotoxin production is urgently required to alleviate potential deleterious effects. Acetohydroxy acid synthase (AHAS) and dihydroxy acid dehydratase are important enzymes in the biosynthetic pathways of branched-chain amino acids (BCAAs), including isoleucine, leucine, and valine.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, India.
Fungal infections (FIs) affect majority of the population, but the current treatments face challenges in terms of their effectiveness. This study focused on specific fungal targets, including dihydrofolate reductase (DHFR), acetohydroxy-acid synthase (AHAS), farnesyltransferase and endoglucanase. The docking studies were conducted with the drug voriconazole (VCZ), comparing it with Fluconazole (FCZ) and Amphotericin B (ATB) against 11 protein data bank (PDB) IDs (IDYR, 3NZB, 6DEQ, 1KS5, 7T0C, 1FY4, 5AJH, 7R79, 6TZ6 and 6IDY).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!