The possibility of solid solution behavior of diastereomeric salts, containing multiple resolving agents of the same family (Dutch Resolution), is predicted by molecular modeling. Super-cells containing different ratios of resolving agents in the diastereomeric salt are constructed and optimized, and their lattice energy is computed. The energy difference between these "simulated solid solutions" and the native structures is related in an understandable fashion to the probability of solid solution formation. This procedure is applied to a family of diastereomeric salts of ephedrine and cyclic phosphoric acids, for which the ternary diagrams have been determined experimentally at 25 degrees C in ethanol. Good agreement between experimental and computational results indicates that this relatively simple and fast method could predict the stable character of solid solution behavior in binary systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0366437 | DOI Listing |
Sci Rep
December 2024
Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang, 330096, China.
Cu-1.33Ni-1.35Sn-0.
View Article and Find Full Text PDFNat Commun
December 2024
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical Engineering, Tsinghua University, Beijing, China.
Structural superlubricity (SSL), a state of ultralow friction and no wear between two solid surfaces in contact, offers a fundamental solution for reducing friction and wear. Recent studies find that the edge pinning of SSL contact dominates the friction. However, its nature remains mysterious due to the lack of direct characterizations on atomic scale.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!