We describe here apparatus and methods for direct analysis of (14)C in biological specimens by accelerator mass spectrometry (AMS). Liquid samples, including plasma and urine, are deposited by pipet into a bed of CuO powder that fills a space within a rigid, refractory support. Volatile components are removed under reduced pressure prior to analysis. The CuO matrix is locally heated with an infrared laser while it is contained within a sealed chamber that is swept with He carrier gas. Heating induces combustion of the applied sample, and the carrier gas transports the CO(2) that is formed to the AMS instrument's ion source, which is appropriately modified for use with CO(2). A rodent study of drug clearance with [(14)C]-acetaminophen was performed to provide plasma and urine specimens, which were analyzed with this overall approach and by liquid scintillation counting for comparison. Results presented here confirm the potential utility of laser-induced sample combustion as an alternative to graphite production for AMS analysis of (14)C. Anticipated benefits of the present approach include reduced risk of sample cross-contamination, decreased analysis time, and greater compatibility with robotics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac030181yDOI Listing

Publication Analysis

Top Keywords

analysis 14c
12
direct analysis
8
accelerator mass
8
mass spectrometry
8
plasma urine
8
carrier gas
8
analysis
5
interface direct
4
14c nonvolatile
4
nonvolatile samples
4

Similar Publications

Article Synopsis
  • India has a high rate of gallstone incidence, which can lead to chronic inflammation and increase cancer risks; this study investigated gallstone age and composition using advanced dating and analysis methods.
  • Three cholesterol gallstones with different histopathologies were analyzed, revealing that the stone with dysplasia formed over six years, while the others took longer; all stones were primarily cholesterol-based, with additional compounds found in the dysplastic stone.
  • The study highlighted the potential of combining radiocarbon dating and microbial analysis in understanding gallstone development, suggesting a link between specific bacterial abundance and gallstone pathology, particularly in dysplastic cases.
View Article and Find Full Text PDF

Old but not ancient: Rock-leached organic carbon drives groundwater microbiomes.

Sci Total Environ

December 2024

Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena_Leipzig, Germany. Electronic address:

More than 90% of earth's microbial biomass resides in the continental subsurface, where sedimentary rocks provide the largest source of organic carbon (C). While many studies indicate microbial utilization of fossil C sources, the extent to which rock-organic C is driving microbial activities in aquifers remains largely unknown. Here we incubated oxic and anoxic groundwater with crushed carbonate rocks from the host aquifer and an outcrop rock of the unsaturated zone characterized by higher organic C content, and compared the natural abundance of radiocarbon (C) of available C pools and microbial biomarkers.

View Article and Find Full Text PDF

Background: Elinzanetant is a dual neurokinin-1,3 receptor antagonist in development for the treatment of menopausal vasomotor symptoms. The objectives of these studies were to characterize the mass balance and biotransformation of elinzanetant.

Methods: In the clinical evaluation, whole blood, plasma, urine, and feces were collected from healthy fasted male volunteers (n = 6) following a single dose of 120 mg [C]-elinzanetant oral suspension for analysis of total radioactivity and metabolite profiling.

View Article and Find Full Text PDF

Quantitatively tracing the decomposition of endogenous particulate organic carbon during sinking in (sub-)deep reservoirs: Using radiocarbon isotopes ΔC.

Water Res

December 2024

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550001, PR China; University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, PR China.

The rapid expansion of reservoirs, coupled with increasing eutrophication, has profoundly influenced regional and global carbon cycles. To precisely assess the carbon sink potential of reservoirs, it is crucial to quantify the decomposition of endogenous particulate organic carbon (POC) during the deposition and sinking of particulate matter in reservoirs. This is particularly important in the context of rising temperatures and intensified human activities.

View Article and Find Full Text PDF

Introduction: CA102N is a novel anticancer drug developed by covalently linking H-Nim (N-(4-Amino-2-phenoxyphenyl methanesulfonamide) to Hyaluronic Acid to target CD44 receptor-rich tumors. The proposed approach seeks to enhance the efficacy and overcome limitations associated with H-Nim, including poor solubility and short half-life.

Methods: The study aimed to evaluate the pharmacokinetics, biodistribution, metabolism, and tumor permeability of [14C] CA102N in xenograft mice following a single intravenous dose of 200 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!