Electrodes modified with monoolein cubic phases hosting laccases for the catalytic reduction of dioxygen.

Anal Chem

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, and Equipe Physico-chimie des Colloïdes, UMR 7565 CNRS, Faculté des Sciences, Université Henri Poincaré Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France.

Published: January 2004

An enzyme-catalyzed process has been used for dioxygen monitoring. The enzymes were two different laccases (p-diphenol:dioxygen oxidoreductases), chosen as catalysts for dioxygen reduction. The laccases were immobilized in a liquid crystalline cubic phase formed with monoolein. The structures of the cubic phases, both with and without enzymes, were established using small-angle X-ray scattering. The catalytic reduction of dioxygen was performed using a glassy carbon electrode modified with cubic phases containing the enzymes. The modified electrode was used as a dioxygen sensing system, based on the increasing reduction current of a suitable electrochemical probe in the presence of dioxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034612oDOI Listing

Publication Analysis

Top Keywords

cubic phases
12
catalytic reduction
8
reduction dioxygen
8
phases enzymes
8
dioxygen
6
electrodes modified
4
modified monoolein
4
cubic
4
monoolein cubic
4
phases hosting
4

Similar Publications

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Materials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~10MPa) is significantly lower than its ideal theoretical limit.

View Article and Find Full Text PDF

Simulation of a liquid drop on a soft substrate.

Eur Phys J E Soft Matter

January 2025

Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.

A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.

View Article and Find Full Text PDF

Deep eutectic solvents are highly tailorable non-aqueous solvents with potential applications ranging from energy catalysis to cryopreservation. Self-assembled lipid structures are already used in a variety of industries including cosmetics, drug delivery and as microreactors. However, most research into lipid self-assembly has been limited to aqueous solvents.

View Article and Find Full Text PDF

The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!