Objective: The goal of this study was to determine the quality of groundwater for certain chemicals from all wells for the military units in Ankara (the capital city of Turkey) to evaluate special situations like a nuclear, biological, and chemical attack.
Method: The quality of underground water has been evaluated chemically by examining 34 different water specimens. Various chemical parameters and heavy metals have been assessed in these samples by using an ion meter and atomic absorption spectrophotometer.
Results: Nitrate and chloride have been assessed at a higher rate with the levels exceeding maximum contaminant levels. Mercury, arsenic, aluminum, iron, conductivity, and salinity have also had levels exceeding maximum contaminant levels for each of them according to the levels set by the World Health Organization.
Conclusion: This study has given us some powerful clues that underground water in Ankara is at a growing risk to be contaminated mainly with nitrate and chloride. Although more detailed investigations are necessary for a better evaluation, it is clear that preventive measures should be implemented or improved.
Download full-text PDF |
Source |
---|
BMC Vet Res
January 2025
Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ School of Environment Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:
Risk assessment of potential toxic elements (PTEs), microplastics (MPs) and microorganisms in groundwater around landfills is critical. Waste from landfills seeps into groundwater contaminating water quality, threatening groundwater safety, and negatively affecting the ecosystem. This study explored spatial and temporal changes in PTEs, MPs, and microorganisms in the groundwater around a closed landfill.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.
Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.
Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961-1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!