Evolution of cell recognition by viruses: a source of biological novelty with medical implications.

Adv Virus Res

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.

Published: March 2004

The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7119103PMC
http://dx.doi.org/10.1016/s0065-3527(03)62002-6DOI Listing

Publication Analysis

Top Keywords

viruses
8
receptor specificity
8
receptor
7
evolution cell
4
cell recognition
4
recognition viruses
4
viruses source
4
source biological
4
biological novelty
4
novelty medical
4

Similar Publications

Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises.

View Article and Find Full Text PDF

HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination.

View Article and Find Full Text PDF

Case: We present a 42-year-old man who developed extensive left lower extremity arterial thrombosis following COVID-19 pneumonia. Despite multiple revascularization attempts and a below-knee amputation, he faced wound necrosis and insufficient soft tissue coverage. An innovative approach using a pedicled flap and sequential flow-through free flaps was used for limb salvage.

View Article and Find Full Text PDF

Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection.

View Article and Find Full Text PDF

Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!