Most existing computational models of the visual perception of three-dimensional shape from texture are based on assumed constraints about how texture is distributed on visible surfaces. The research described in the present article was designed to investigate how violations of these assumptions influence human perception. Observers were presented with images of smoothly curved surfaces depicted with different types of texture, whose distribution of surface markings could be both anisotropic and inhomogeneous. Observers judged the pattern of ordinal depth on each object by marking local maxima and minima along designated scan lines. They also judged the apparent magnitudes of relative depth between designated probe points on the surface. The results revealed a high degree of accuracy and reliability in all conditions, except for a systematic underestimation of the overall magnitude of surface relief. These findings suggest that human perception of three-dimensional shape from texture is much more robust than would be reasonable to expect based on current computational models of this phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0963-7214.2004.01501007.xDOI Listing

Publication Analysis

Top Keywords

curved surfaces
8
computational models
8
perception three-dimensional
8
three-dimensional shape
8
shape texture
8
human perception
8
perception
4
perception doubly
4
doubly curved
4
surfaces anisotropic
4

Similar Publications

In this study we evaluated the effects of flow lamination on aerosol flow dynamics and deposition at the exit point in testing models with spatial barriers (narrowing or curving).We compared ModiFlow (MF) to an idealized Standard Spacer (SS) in their efficiency of delivery of aerosolized medication (fluticasone) across different types of spatial barriers. Fluticasone propionate HFA Inhaler from Prasco Labs 220 µg per actuation was used to deliver 1 spray in each test tube.

View Article and Find Full Text PDF

To address the problems of the labeling curved surfaces vegetable with long label, such as the label wrinkled and the easy detachment, a cam-elliptical gear combined labeling mechanism with an improved hypocycloid trajectory is proposed. Provide the process of the mechanism, and establish a kinematic model of the mechanism. In order to improve the motion performances of the cam-elliptical gear combined labeling mechanism and avoid labels damage, the NSGA-II algorithm is used to optimize the parameters of the mechanism, resulting in 80 sets of Pareto solutions.

View Article and Find Full Text PDF

First Report of Causing Leaf Blight on in China.

Plant Dis

December 2024

Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;

Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.

View Article and Find Full Text PDF

First Report of Leaf Spot Caused by on Invasive Weed in Korea.

Plant Dis

December 2024

Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;

Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.

View Article and Find Full Text PDF

High-Performance Boiling Surfaces Enabled by an Electrode-Transpose All-Electrochemical Strategy.

Adv Sci (Weinh)

December 2024

Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance boiling surfaces are in great demand for efficient cooling of high-heat-flux devices. Although various micro-/nano-structured surfaces have been engineered toward higher surface wettability and wickability for enhanced boiling, the design and fabrication of surface structures for realizing both high critical heat flux (CHF) and high heat transfer coefficient (HTC) remain a key challenge. Here, a novel "electrode-transpose" all-electrochemical strategy is proposed to create superhydrophilic microporous surfaces with higher dendrites and larger pores by simply adding an electrochemical etching step prior to the multiple electrochemical deposition steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!