The nicotinic acetylcholine receptor (nAChR) belongs to a family of five channel-forming proteins that regulate communication between the approximately 10(12) cells of the nervous system. A minimum mechanism of inhibition of the muscle-type nAChR (1) by the noncompetitive inhibitors cocaine and MK-801 [(+)-dizocilpine, an anticonvulsant] indicated they bind to a regulatory site, with higher affinity for the closed-channel form than for the open-channel form, thus shifting the equilibrium toward the closed-channel form and inhibiting receptor function. The mechanism predicts that compounds that bind to this regulatory site with equal or higher affinity for the open-channel conformation than for the closed-channel conformation will prevent receptor inhibition (1). Does a neuronal form of the receptor behave similarly? The mechanism of inhibition of the neuronal nAChR by cocaine and MK-801 using rapid chemical kinetic techniques was investigated. The alpha3beta4 nAChR stably expressed in HEK 293 cells was used in these investigations. Whole-cell currents originated from a major and minor nAChR isoform. Only the major isoform has been characterized. For the dominant, rapidly desensitizing isoform, the carbamoylcholine dissociation constant for the site controlling receptor activation, Kd, is 2 mM; the channel-opening equilibrium constant, Phi(-1), is 4; and the dominant desensitization rate constant, k34, is 20 s(-1). Cocaine inhibits the receptor noncompetitively, with an apparent KI of 84 and 26 microM at high and low carbamoylcholine concentrations, at which concentrations the receptor is mainly in the open- or closed-channel form, respectively. Similar results were obtained with MK-801. A combinatorially synthesized RNA ligand and a cocaine analogue alleviated cocaine inhibition of this neuronal receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi034838l | DOI Listing |
Alzheimers Dement
December 2024
Centre for Addiction and Mental Health, Toronto, ON, Canada.
Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.
View Article and Find Full Text PDFBackground: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université de Lille, Lille, Hauts-de-France, France.
Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule-binding domains in the intracellular aggregation of Tau protein.
Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti-tau VHHs.
Alzheimers Dement
December 2024
National Institute on Aging, NIH, Baltimore, MD, USA.
Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!