Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.).

Environ Sci Technol

School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

Published: December 2003

A growth chamber study was conducted to investigate the fate of pyrene in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). For this study, 14C-labeled pyrene was used, and distribution of 14C activity was assessed after plant establishment. After 190 days of incubation, 37.7 and 30.4% of 14C-pyrene was mineralized in the soil planted with tall fescue and switchgrass, respectively, while 4.3% mineralization was observed for the unplanted control. Only 7.6 and 8.7% of pyrene was recovered from the soil in the two planted treatments, while 31.5% of pyrene remained in the unplanted control. Significant amounts of 14C were observed for all treatments and controls in the humic/fulvic fraction of soil at the end of the experiment. This research indicates the potential for pyrene mineralization in planted systems, although the ultimate fate of degradation byproducts is uncertain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es030400xDOI Listing

Publication Analysis

Top Keywords

tall fescue
12
rhizosphere tall
8
fescue festuca
8
festuca arundinacea
8
arundinacea switchgrass
8
switchgrass panicum
8
panicum virgatum
8
soil planted
8
unplanted control
8
pyrene
6

Similar Publications

With the growing bourbon industry in the southeastern U.S. leading to increased production of liquid distillery byproducts, there is a pressing need to explore sustainable uses for whole stillage [containing residual grain (corn, rye, malted barley) and liquid after ethanol separation] in livestock nutrition.

View Article and Find Full Text PDF

Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.

View Article and Find Full Text PDF

Effects of Artificially Modified Microbial Communities on the Root Growth and Development of Tall Fescue in Nutrient-Poor Rubble Soil.

Plants (Basel)

November 2024

Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.

The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.

View Article and Find Full Text PDF

Winter wheat ( L.) is a significant forage source for livestock grazing in the Southern Great Plains (SGP). However, increasing input costs and changing climate conditions compel producers and researchers to search for alternative forage systems, such as cool-season perennials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!