We sought to determine whether common genetic variations at the beta2 (beta2-AR, Gln27Glu) and beta3 (beta3-AR, Trp64Arg) adrenergic receptor gene loci were associated with cardiovascular (CV) hemodynamics during maximal and submaximal exercise. CV hemodynamics were assessed in 62 healthy postmenopausal women (20 sedentary, 22 physically active, and 20 endurance athletes) during treadmill exercise at 40, 60, 80, and 100% maximal O2 uptake using acetylene rebreathing to quantify cardiac output. The beta2-AR genotype and habitual physical activity (PA) levels interacted to significantly associate with arteriovenous O2 difference (a-vDO2) during submaximal exercise (P = 0.05), with the highest submaximal exercise a-vDO2 in sedentary women homozygous for the beta2-AR Gln allele and no genotype-dependent differences in submaximal exercise a-vDO2 in physically active and athletic women. The beta2-AR genotype also was independently associated with a-vDO2 during submaximal (P = 0.004) and approximately 100% maximal O2 uptake exercise (P = 0.006), with a 1.2-2 ml/100 ml greater a-vDO2 in the Gln/Gln than in the Glu/Glu genotype women. The beta3-AR genotype, independently or interacting with habitual PA levels, was not significantly associated with any CV hemodynamic variables during submaximal or maximal exercise. Thus it appears that the beta2-AR genotype, both independently and interacting with habitual PA levels, is significantly associated with a-vDO2 during exercise in postmenopausal women, whereas the beta3-AR genotype does not appear to be associated with any maximal or submaximal exercise CV hemodynamic responses in postmenopausal women.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00498.2003DOI Listing

Publication Analysis

Top Keywords

submaximal exercise
20
postmenopausal women
16
beta2-ar genotype
12
genotype independently
12
exercise
10
exercise hemodynamics
8
maximal submaximal
8
physically active
8
100% maximal
8
maximal uptake
8

Similar Publications

Competing effects of activation history on force and cytosolic Ca in intact single mice myofibers.

Pflugers Arch

December 2024

School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.

The purpose was to investigate the changes in cytosolic Ca and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca concentration ([Ca]) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca] were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP).

View Article and Find Full Text PDF

Frequent changes in altitude and oxygen levels limit the practical application of traditionally derived exercise thresholds or training zones based on heart rate (HR) or blood lactate concentration (bLa). We investigated the transferability of a muscle oxygenation (SmO)-based intensity prescription between different hypoxic conditions to assess the suitability of real-time SmO measurements for ski-mountaineering (SKIMO) athletes during submaximal endurance exercise. A group of 15 well-trained male SKIMO athletes performed a graded-intensity run test in normoxia (87 m ASL, FiO = 20.

View Article and Find Full Text PDF

Left ventricular assist devices (LVAD) have improved mortality and quality of life for patients with end-stage heart failure by providing an alternative to cardiac transplant or as a bridge to transplantation. The improvement in functional capacity however is minimal to modest depending on the right ventricular function, optimal hemodynamics on LVAD therapy, and comorbidities. There is improvement in submaximal exercise capacity but improvement in peak aerobic capacity is limited.

View Article and Find Full Text PDF

Exercise performance effect of central dopamine is mediated by hypothalamic neuronal activation.

Behav Brain Res

December 2024

Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Acting centrally, dopamine has been shown to induce ergogenic effects derived from its influence on thermoregulation, motivation, reward, and motor control. Thus, to evaluate the role of the central dopaminergic system in hypothalamic neuronal activation and its relationship with exercise performance, Wistar rats were intracerebroventricularly injected with saline (SAL) or SCH-23390 (SCH, dopamine D1 receptor blocker) at rest and before timed submaximal exercise (∼13 min) or exercise until fatigue. Core body and tail temperatures were recorded throughout the exercise.

View Article and Find Full Text PDF

Introduction: Assessment of exercise capacity by cardiopulmonary exercise testing (CPET) in adults with congenital heart disease (CHD) is important for prognostication and preoperative assessment. Peak oxygen uptake (PVO) is used commonly, but can be challenging due to the difficulties of undertaking maximal CPET testing in this population. We explored whether oxygen uptake efficiency slope (OUES) at ventilatory anaerobic threshold (VAT), the point during CPET at which OUES becomes strongly correlated with PVO, and is more reliably available from submaximal CPET, can predict PVO in adults with CHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!