Sensing vascular distension in skeletal muscle by slow conducting afferent fibers: neurophysiological basis and implication for respiratory control.

J Appl Physiol (1985)

Laboratoire de Physiologie, Faculté de Médecine de Nancy, Universitié Henri Poincaré, 54505 Vandoeuvre-lès-Nancy, France.

Published: February 2004

AI Article Synopsis

  • This review highlights how skeletal muscles can detect the condition of blood vessels through specific nerve fibers.
  • Evidence suggests that these nerve fibers are physically located near blood vessels and respond to mechanical changes.
  • The study also discusses how this sensing mechanism may help regulate breathing during exercise by adjusting ventilation based on muscle blood flow and metabolic needs.

Article Abstract

This review examines the evidence that skeletal muscles can sense the status of the peripheral vascular network through group III and IV muscle afferent fibers. The anatomic and neurophysiological basis for such a mechanism is the following: 1) a significant portion of group III and IV afferent fibers have been found in the vicinity and the adventitia of the arterioles and the venules; 2) both of these groups of afferent fibers can respond to mechanical stimuli; 3) a population of group III and IV fibers stimulated during muscle contraction has been found to be inhibited to various degrees by arterial occlusion; and 4) more recently, direct evidence has been obtained showing that a part of the group IV muscle afferent fibers is stimulated by venous occlusion and by injection of vasodilatory agents. The physiological relevance of sensing local distension of the vascular network at venular level in the muscles is clearly different from that of the large veins, since the former can directly monitor the degree of tissue perfusion. The possible involvement of this sensing mechanism in respiratory control is discussed mainly in the light of the ventilatory effects of peripheral vascular occlusions during and after muscular exercise. It is proposed that this regulatory system anticipates the chemical changes that would occur in the arterial blood during increased metabolic load and attempts to minimize them by adjusting the level of ventilation to the level of muscle perfusion, thus matching the magnitudes of the peripheral and pulmonary gas exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00597.2003DOI Listing

Publication Analysis

Top Keywords

afferent fibers
20
group iii
12
neurophysiological basis
8
respiratory control
8
peripheral vascular
8
vascular network
8
muscle afferent
8
fibers stimulated
8
fibers
6
muscle
5

Similar Publications

Acute and circadian feedforward regulation of agouti-related peptide hunger neurons.

Cell Metab

December 2024

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:

When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.

View Article and Find Full Text PDF

Background And Purpose: The dorsolateral portion of the caudal pons contains the vestibular nucleus (VN) and inferior cerebellar peduncle (ICP) that play important roles in conveying and processing vestibular and ocular motor signals. This study aimed to characterize ocular motor abnormalities along with their anatomical correlations in dorsolateral pons (DLP) lesions.

Methods: We analyzed clinical features, and results of neuro-otological evaluations and neuroimaging of 18 patients with unilateral DLP lesions (17 with DLP infarction and 1 with cavernous malformation) from among 506 patients with pontine infarction in a stroke registry.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Background: In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis.

Methods: K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!