AI Article Synopsis

  • * A study revealed that sphingolipid deficiency leads to increased secretion of soluble APPalpha and elevated amyloid beta-protein 42 levels, while beta-cleavage activity remains unchanged.
  • * The findings suggest that sphingolipids, alongside cholesterol, may play a significant role in Alzheimer's disease by affecting APP cleavage through mechanisms involving the MAPK/ERK signaling pathway.

Article Abstract

Lipid rafts and their component, cholesterol, modulate the processing of beta-amyloid precursor protein (APP). However, the role of sphingolipids, another major component of lipid rafts, in APP processing remains undetermined. Here we report the effect of sphingolipid deficiency on APP processing in Chinese hamster ovary cells treated with a specific inhibitor of serine palmitoyltransferase, which catalyzes the first step of sphingolipid biosynthesis, and in a mutant LY-B strain defective in the LCB1 subunit of serine palmitoyltransferase. We found that in sphingolipid-deficient cells, the secretion of soluble APPalpha (sAPPalpha) and the generation of C-terminal fragment cleaved at alpha-site dramatically increased, whereas beta-cleavage activity remained unchanged, and the epsilon-cleavage activity decreased without alteration of the total APP level. The secretion of amyloid beta-protein 42 increased in sphingolipid-deficient cells, whereas that of amyloid beta-protein 40 did not. All of these alterations were restored in sphingolipid-deficient cells by adding exogenous sphingosine and in LY-B cells by transfection with cLCB1. Sphingolipid deficiency increased MAPK/ERK activity and a specific inhibitor of MAPK kinase, PD98059, restored sAPPalpha level, indicating that sphingolipid deficiency enhances sAPPalpha secretion via activation of MAPK/ERK pathway. These results suggest that not only the cellular level of cholesterol but also that of sphingolipids may be involved in the pathological process of Alzheimer's disease by modulating APP cleavage.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M309832200DOI Listing

Publication Analysis

Top Keywords

sphingolipid deficiency
12
sphingolipid-deficient cells
12
precursor protein
8
lipid rafts
8
app processing
8
specific inhibitor
8
serine palmitoyltransferase
8
amyloid beta-protein
8
app
5
cells
5

Similar Publications

Farber disease (FD) is an ultra-rare, autosomal-recessive, lysosomal storage disorder attributed to ASAH1 gene mutations. FD is characterized by acid ceramidase (ACDase) deficiency and the accumulation of ceramide in various tissues. Classical FD patients typically manifest symptoms including lipogranulomatosis, respiratory complications, and neurological deficits, often leading to mortality during infancy.

View Article and Find Full Text PDF

Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease.

PLoS One

December 2024

Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.

Article Synopsis
  • - Krabbe disease (Kd) is caused by a deficiency in the enzyme GALC, leading to the accumulation of the lipid galactosylceramide (GalCer), which produces a toxic lipid called psychosine that damages myelinating cells and leads to demyelination.
  • - Research using induced pluripotent stem cells (iPSCs) from Kd patients revealed that Kd myelinating organoids exhibit early myelination defects without affecting other cell types, while the microglia in these organoids show changes in response to GalCer feeding.
  • - The findings suggest that while Kd model organoids don't show classic lysosomal dysfunction, they provide an essential platform for studying the mechanisms behind demyel
View Article and Find Full Text PDF

Background: Skin atrophy and fragility associated with Dermatoporosis result from chronic extracellular matrix (ECM) degradation. A current marketed product, ReFORM & RePAIR COMPLEX with TriHex Technology® (R&R, Alastin Skincare, Inc.), contains actives that aid in recycling the ECM with new matrix components that have been found to be deficient in patients with DP.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of the lysosomal enzyme ⍺-galactosidase-A (⍺-Gal A), resulting in widespread accumulation of terminal galactose-containing glycosphingolipids (GSLs) and the impairment of multiple organ systems. Thrombotic events are common in Fabry patients, with strokes and heart attacks being significant contributors to a shortened lifespan in patients of both genders. Previously, we developed an ⍺-Gal A-knockout (KO) murine model that recapitulates most Fabry symptomologies and demonstrated that platelets from KO males become sensitized to agonist-mediated activation.

View Article and Find Full Text PDF

Gaucher disease (GD) is a lysosomal lipid storage disorder caused by β-glucocerebrosidase (encoded by gene) activity deficiency, resulting in the accumulation of glucosylceramide (Gb1) and its deacylated metabolite glucosylsphingosine (lyso-Gb1). Lyso-Gb1 has been studied previously and proved to be a sensitive biomarker, distinguishing patients with GD from carriers and healthy subjects. It was shown that its level corresponds with β-glucocerebrosidase activity, thus it remains unknown as to why carriers have slightly higher lyso-Gb1 level than healthy population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: