The neurotoxic effect of the pro-inflammatory cytokine interleukin (IL)-1beta was studied in monolayer cultures, obtained using roller-drum incubation of hippocampal slices from neonatal Sprague Dawley rats. Following exposure to recombinant rat IL-1beta for four days, a concentration dependent loss was observed in the number of NMDAR1 receptor subunit immunoreactive pyramidal neurons in the cultures, reaching significance at 10 ng/ml rIL-1beta. Also incubation with recombinant mouse IL-1beta caused a loss of pyramidal neurons, with a significant effect at a concentration of 30 pg/ml. The vitamin E analog trolox (30 microM) was found to exert a protective effect against the rIL-1beta induced neuronal degeneration. A neuroprotective action against rIL-1beta was also found after co-incubation with the NMDA antagonist dizocilpine (MK-801; 30 microM), while no protection was found with the GABAA mimetic clomethiazole. Hence, the pro-inflammatory cytokine IL-1beta is neurotoxic to hippocampal pyramidal neurons when studied in an in vitro system with advanced phenotypic characteristics. The neuroprotective effects exerted by trolox and MK-801 suggest that free radicals and NMDA receptor-mediated processes are involved in IL-1beta -induced neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF03033173 | DOI Listing |
Cells
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh; Center for the Neural Basis of Cognition, Carnegie Mellon University. Electronic address:
Background: Certain cognitive processes require inhibition provided by the somatostatin (SST) class of gamma-aminobutyric acid (GABA) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST mRNA levels are lower in the DLPFC in schizophrenia, it is not known if SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67).
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.
Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America.
Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin 10587, Germany.
Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!