Isolation and structure elucidation of the major photodegradation products of loteprednol etabonate.

Steroids

Senju Pharmaceutical Co, Ltd, 1-5-4, Murotani Nishi-ku, Kobe, Hyogo 651-2241, Japan.

Published: January 2004

Photodegradation of loteprednol etabonate (5), a steroid anti-inflammatory drug, in the solid state, in aqueous suspension, and in aqueous acetonitrile solution has been investigated. Analysis by HPLC showed that the profile of photodegradation products in the solid state was qualitatively similar to that in the aqueous suspension, although the profile in the aqueous acetonitrile solution was considerably different. The major photodegradation products were isolated from the aqueous suspension and the aqueous acetonitrile solution by using preparative reversed-phase HPLC and their structures were elucidated on the basis of spectroscopic data. Photolysis in the solid state and in aqueous suspension yielded three rearrangement products, chloromethyl 17alpha-ethoxycarbonyloxy-11beta-hydroxy-5alpha-methyl-2-oxo-19-norandrosta-1(10),3-diene-17beta-carboxylate (8), chloromethyl 17alpha-ethoxycarbonyloxy-11beta-hydroxy-1-methyl-3-oxo-6(5-->10alpha)-abeo-19-norandrosta-1,4-diene-17beta-carboxylate (9), and chloromethyl 1beta,11beta-epoxy-17alpha-ethoxycarbonyloxy-2-oxo-10alpha-androsta-4-ene-17beta-carboxylate (10). In aqueous acetonitrile solution, 10 was the major product, however, 8 and 9 were not obtained. Pathways for the formation of these compounds from loteprednol etabonate (5) are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2003.09.010DOI Listing

Publication Analysis

Top Keywords

aqueous suspension
16
aqueous acetonitrile
16
acetonitrile solution
16
photodegradation products
12
loteprednol etabonate
12
solid state
12
major photodegradation
8
aqueous
8
state aqueous
8
suspension aqueous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!