The structure of Gd-DTPA-polylysine, Gd-DOTA-polylysine, Gd-SCN-Bz-DOTA-polylysine, and Gd-DTPA-poly(glu:lys) was investigated with circular dichroism, gel permeation chromatography, low angle light scattering, and proton longitudinal relaxivity. Molecular modeling calculations were performed and predicted helical secondary structure for charged Gd-chelator residues, i.e., Gd-DTPA, when the DTPA conjugation levels reached 90% and higher. This helical secondary structure was observed with circular dichroism. The conformational transition from coiled to extended linear was observed also by gel permeation chromatography and by proton relaxivity measurements. The helical secondary structure was not observed when the chelator was changed to DOTA. The residue charge interactions were eliminated in this case since the Gd-DOTA complex had no net charge. For this construct, the gel permeation and relaxivity measurements indicated a coiled conformation. An extended linear conformation was regained when the chelator complex was changed to Gd-SCN-Bz-DOTA, which had a net negative charge. The functional aspects of these structures were investigated by MR imaging of an animal tumor model. The linear extended polymer constructs gave 10-fold higher tumor signals then the coiled-collapsed constructs, indicating a much higher degree of trans-endothelial transport in the tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm034197+DOI Listing

Publication Analysis

Top Keywords

gel permeation
12
helical secondary
12
secondary structure
12
circular dichroism
8
permeation chromatography
8
structure observed
8
extended linear
8
relaxivity measurements
8
conformation structure
4
structure polymeric
4

Similar Publications

Formulation Advances in Posterior Segment Ocular Drug Delivery.

J Ocul Pharmacol Ther

January 2025

Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India.

Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release.

View Article and Find Full Text PDF

Synthesis of value-added products from post-consumer waste polyolefins is fascinating as well as challenging. Here we report ruthenium-catalyzed up-cycling of the polyethylene to long-chain alkene derivatives. The developed methodology mainly involves two steps i.

View Article and Find Full Text PDF

Novel one-step lignin microsphere preparation for oral tissue regeneration applications.

Front Bioeng Biotechnol

January 2025

Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.

Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.

View Article and Find Full Text PDF

Carbonic Anhydrase IX Targeted Polyaspartamide fluorescent Probes for Tumor imaging.

Int J Nanomedicine

January 2025

College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.

Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.

View Article and Find Full Text PDF

Purpose: The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile.

Methods: The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!