[Mechanisms of meiotic restitution and their genetic regulation in wheat-rye polyhaploids].

Genetika

Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia.

Published: November 2003

Meiosis has been studied in partially fertile wheat-rye F1 hybrids yielded by crosses Triticum aestivum (Saratovskaya 29 variety) x Secale cereale L. (Onokhoiskaya variety) (4x = 28). Hybrid self-fertility proved to be caused by formation of restituted nuclei, which appear after equational segregation of univalent chromosome in AI and sister chromatid non-separation in AII of meiosis, as well as after AI blockage in three different ways. Both types of meiotic restitution were found in each hybrid plant. Expression of the "meiotic restitution" trait varied significantly in polyhaploids of the same genotype (ears of the same plants, anthers of the same ear, microsporocytes of the same anther). Chromatin condensation in prophase proved to be related to the division type and univalent segregation in AI. During reduction segregation of univalents in AI, sister chromatid cohesion and chromosome supercondensation remained unchanged. The results obtained suggest that in the remote hybrids with haploid karyotype of the parental origin (polyhaploids), the program of two-stage meiosis may be fundamentally transformed to ensure one instead of two divisions. We propose that meiotic restitution is a result of special genetic regulation of the kinetochore organization (both structural and functional) and chromatin condensation, i.e. of major meiotic mechanisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

meiotic restitution
12
genetic regulation
8
sister chromatid
8
chromatin condensation
8
[mechanisms meiotic
4
restitution genetic
4
regulation wheat-rye
4
wheat-rye polyhaploids]
4
polyhaploids] meiosis
4
meiosis studied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!