We have studied the issues associated with the use of platinum electrodes for transdermal iontophoretic delivery of peptides, using insulin as a model peptide. Insulin permeation was studied using full-thickness rat skin by varying the donor solution pH as a function of electrode polarity. The stability of insulin under the iontophoretic conditions was studied using TLC, SDS-polyacrylamide gel electrophoresis and HPLC. Large pH shifts were observed during anodal iontophoresis (AI), when the donor solution pH was above the isoelectric point of insulin and in cathodal iontophoresis (CI), when the donor solution pH was below the isoelectric point of insulin. The direction and magnitude of electroosmotic flow was influenced by pH of the donor solution and the electrode polarity. On the other hand, the buffer used to maintain the pH governed the contribution of electrorepulsion to the overall transport of insulin. Electrochemical degradation of insulin was significant during AI at pH 7.4. Among the pH investigated, AI of insulin at pH 3.6 and CI at pH 8.35 were better, as the pH shift was relatively less and electrochemically more stable during iontophoresis as compared with other pH. In summary, the pH shift caused by platinum electrodes had a significant influence on the permeation and stability of insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1211/0022357022197 | DOI Listing |
Sci Rep
January 2025
Graduate Program in Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.
Serological typing of MNS polymorphic antigens - M, N, S and s - remains a fundamental technique in transfusion medicine and prenatal care, providing essential information for matching blood donors and recipients and managing haemolytic disease. Although this method is well proven and routinely used, it is not a comprehensive solution, as it has several weaknesses. Alternatively, multiplex polymerase chain reaction (PCR) is a commonly used genotyping tool due to its potency and ability to amplify several DNA targets simultaneously in a single reaction.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Avda. Libertador 80, Mendoza CP5500, Argentina. Electronic address:
A hypertonic solution of Ibuprofen (Ibu) was designed to nebulize, associating a low concentration of Ibu with L-Arginine (AR), to increase solubility and serve as a nitric oxide donor. To provide preclinical research human bronchial epithelial cells derived from a cystic fibrosis patient homozygous for the ΔF508 CFTR mutation (CFBE41o-) and mouse RAW 264.7 macrophages were pre-treated with Ibu (10-100 μM), AR (20 and 200 μM), or the combination Ibu-AR (10-100 μM).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy. Electronic address:
Spirulina is a unicellular microalga, characterized by blue/green color, that has received significant attention for its interesting nutritional composition. Phenolic compounds and phycocyanin (PC) are responsible for the many biological activities of Spirulina. Spirulina phenolic compounds are usually extracted using organic solvents, while PC is extracted with water or phosphate buffer solution, obtaining an extract characterized by low stability and low purity.
View Article and Find Full Text PDFBiomaterials
January 2025
Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore. Electronic address:
Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany.
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!