The cancer-prone and premature aging disease Werner syndrome is due to loss of WRN gene function. Cells lacking WRN demonstrate genomic instability, including telomeric abnormalities and undergo premature senescence, suggesting defects in telomere metabolism. This notion is strongly supported by our finding of physical and functional interactions between WRN and TRF2, a telomeric repeat binding factor essential for proper telomeric structure. TRF2 binds to DNA substrates containing telomeric repeats and facilitates their degradation specifically by WRN exonuclease activity. WRN and TRF2 also interact directly in the absence of DNA. These results suggest that TRF2 recruits WRN for accurate processing of telomeric structures in vivo. Thus, our findings link problems in telomere maintenance to both carcinogenesis and specific features of aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206906 | DOI Listing |
bioRxiv
December 2024
Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing.
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.
View Article and Find Full Text PDFElife
December 2024
Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.
View Article and Find Full Text PDFJ Vis Exp
August 2024
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University;
Telomeres, the protective structures at the ends of chromosomes, are crucial for maintaining cellular longevity and genome stability. Their proper function depends on tightly regulated processes of replication, elongation, and damage response. The shelterin complex, especially Telomere Repeat-binding Factor 1 (TRF1) and TRF2, plays a pivotal role in telomere protection and has emerged as a potential anti-cancer target for drug discovery.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
Telomeric repeat containing RNA (TERRA) is a noncoding RNA that is transcribed from telomeres. Previous study showed that TERRA trans anneals by invading into the telomeric duplex to form an R-loop in mammalian cells. Here, we elucidate the molecular mechanism underlying TERRA recruitment and invasion into telomeres in the context of shelterin proteins, RAD51 and RNase H using single molecule (sm) assays.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!