Background: The optimum surface roughness of cemented femoral stems used for total hip replacement is a subject of controversy. While rougher surfaces provide stronger cement adhesion, it has been hypothesized that polished, tapered, noncollared stems settle into the cement mantle, providing improved stability. However, the effects of surface finish on the stability of straight, cemented stems tapered only in the coronal plane are not known.
Methods: Using composite model femora, we assessed the initial stability of a straight, cemented femoral stem as a function of surface roughness, the presence or absence of a collar, stem size, and the resultant cement thickness under simulated walking and stair-climbing loads. Otherwise identical stems were manufactured with polished or rough surfaces, with or without a collar, in two different sizes. We isolated these three variables and compared their relative contributions to the motion at the stem-cement interface throughout cyclic loading. We defined three indicators of stability: per-cycle motion, rate of migration, and final migration.
Results: Surface roughness had a greater influence on per-cycle motions than did the presence or absence of a collar or cement thickness. Specifically, in the medial-lateral direction, per-cycle motion of polished stems was 43 micro m greater than that of rough stems (p < 0.01). None of the per-cycle motions decreased over the 77,000 load cycles. In contrast, with all stems, the rate of migration decreased over the course of cyclic loading, but the rate of migration of the polished stems was greater than that of the rough stems. Final migrations of the stems over the course of loading were generally distal, medial, and into retroversion. Compared with rough stems, polished stems had 8 to 18 micro m more axial migration (p < 0.001), 48 micro m more anterior-posterior migration (p < 0.001), and 0.4 degrees more rotational migration (p = 0.01).
Conclusions: and
Clinical Relevance: The results indicated that, for cemented, straight femoral stems tapered only in the coronal plane, a rough surface offers the advantage of less per-cycle motion. These results may apply to widely used cemented stem designs based on the profile of the original Charnley femoral component, which has approximately parallel anterior and posterior aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/00004623-200401000-00016 | DOI Listing |
Mol Ecol
January 2025
ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.
Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Life Sciences, Changzhi University, Changzhi, China.
is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.
View Article and Find Full Text PDFBreast cancer is a significant health challenge worldwide, and disproportionately affects women of African ancestry (AA) who experience higher mortality rates relative to other racial/ethnic groups. Several studies have pointed to biological factors that affect breast cancer outcomes. A recently discovered stromal cell population that expresses P ROCR, Z EB1 and P DGFRα (PZP cells) was found to be enriched in normal healthy breast tissue from AA donors, and only in tumor adjacent tissues from donors of European ancestry (EA).
View Article and Find Full Text PDFAsian Spine J
December 2024
National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
Computed tomography (CT) is widely used for the diagnosis and surgical treatment of spinal pathologies, particularly for pedicle screw placement. However, CT's limitations, notably radiation exposure, necessitate the development of alternative imaging techniques. Synthetic CT (sCT), which generates CT-like images from existing magnetic resonance imaging (MRI) scans, offers a promising alternative to reduce radiation exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!