Purine nucleoside phosphorylase deficiency associated with a dysplastic marrow morphology.

Pediatr Res

Division of Immunology and Allergy, The Hospital for Sick Children, 555 University Ave., Rm. 7279 Elm Wing, Toronto, Ontario, M5G 1X8, Canada.

Published: March 2004

Purine nucleoside phosphorylase (PNP) deficiency is an autosomal recessive metabolic disorder characterized by severe combined immunodeficiency and by complex neurologic symptomatology including ataxia, developmental delay, and spasticity. Herein we report severe marrow dysplasia in a patient with PNP deficiency. Drug-related marrow dysfunction was unlikely, and marrow virological studies were negative. A preleukemic myelodysplastic syndrome was also unlikely due to normal marrow CD34+ cells, colony growth in clonogenic assay of marrow mononuclear cells, apoptosis rate, and Fas expression on marrow nucleated cells, as well as morphologic improvement of the marrow dysplasia after normal red blood cell transfusion. The patient's marrow stroma showed hypersensitivity to irradiation and undetectable PNP enzyme activity similar to peripheral lymphocytes. This is the first report of PNP deficiency associated with increased lymphocyte and marrow stromal sensitivity to irradiation. We conclude that marrows from patients with PNP deficiency might have hypersensitivity to irradiation and can develop dysplastic morphology, caused either directly or indirectly by the inherited enzymatic defect.

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.PDR.0000111286.23110.F8DOI Listing

Publication Analysis

Top Keywords

pnp deficiency
16
marrow
10
purine nucleoside
8
nucleoside phosphorylase
8
deficiency associated
8
marrow dysplasia
8
hypersensitivity irradiation
8
deficiency
5
pnp
5
phosphorylase deficiency
4

Similar Publications

Purine nucleoside phosphorylase (PNP) deficiency is one of the very rare types of immune deficiency disorders inherited in an autosomal recessive (AR) manner. PNP deficiency is a progressive immune disorder that can range from severe combined immunodeficiency (SCID) to combined immunodeficiency and is associated with recurrent infections, neurological manifestations, and sometimes autoimmune disorders. In our case, we describe the case of a female patient, two years and six months old, with recurrent infections, severe neutropenia, failure to thrive, and a history of a deceased sister with the same condition.

View Article and Find Full Text PDF

Purpose: We report the case of a 6-year-old boy who presented with muscular hypertonia, impaired growth, and recurrent infections, who was diagnosed with purine nucleoside phosphorylase (PNP) deficiency with two novel mutations in the gene. He underwent a hematopoietic stem cell transplantation (HSCT) from an unrelated donor, and we observed the clinical outcome.

Methods: We retrospectively analyzed the clinical manifestations and outcomes of this patient who underwent HSCT.

View Article and Find Full Text PDF

Discovery of 2(1)-Quinoxalinone Derivatives as Potent and Selective MAT2A Inhibitors for the Treatment of MTAP-Deficient Cancers.

J Med Chem

January 2025

Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

Article Synopsis
  • MAT2A is a promising target for cancer treatment, especially in tumors with MTAP gene deletion, but there are challenges in ensuring the selectivity of MAT2A inhibitors for these specific cancers.
  • Recent research led to the identification of new MAT2A inhibitors with a unique 2(1)-quinoxalinone structure that effectively inhibit MAT2A and selectively target MTAP-deficient cancer cells.
  • One of the novel compounds demonstrated strong pharmacokinetic properties and showed enhanced anticancer effects in models with MTAP-deficient tumors, highlighting potential advancements in drug development for these cancer types.
View Article and Find Full Text PDF

Inhibitory Effect of PRMT5/MTA Inhibitor on MTAP-Deficient Glioma May Be Influenced by Surrounding Normal Cells.

Cancer Med

December 2024

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.

Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.

View Article and Find Full Text PDF

MTAP as an emerging biomarker in thoracic malignancies.

Lung Cancer

November 2024

Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland. Electronic address:

S-methyl-5'-thioadenosine phosphorylase (MTAP) deficiency is an emerging biomarker in non-small cell lung cancer (NSCLC) and beyond. The MTAP gene is located in the chromosomal region 9p21.3, which shows one of the most common homozygous deletions across all human cancers (9p21 loss).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!