Leukocyte adhesion deficiency in children and Irish setter dogs.

Pediatr Res

Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, 10 Center MSC1907, Building 10, Room 12C116, Bethesda, MD 20892, USA.

Published: March 2004

Children with the genetic immunodeficiency disease leukocyte adhesion deficiency, or LAD, develop life-threatening bacterial infections as a result of the inability of their leukocytes to adhere to the vessel wall and migrate to the sites of infection. Recently, the canine counterpart to LAD, known as canine leukocyte adhesion deficiency, or CLAD, has been described in Irish setter dogs. This review describes how the clinical phenotype of dogs with CLAD closely parallels that of children with the severe deficiency phenotype of LAD, thus enabling the CLAD dog to provide a disease-specific, large-animal model for testing novel hematopoietic stem cell and gene therapy strategies before their translation to children with LAD.

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.PDR.0000111287.74989.1BDOI Listing

Publication Analysis

Top Keywords

leukocyte adhesion
12
adhesion deficiency
12
irish setter
8
setter dogs
8
deficiency
4
children
4
deficiency children
4
children irish
4
dogs children
4
children genetic
4

Similar Publications

The Integrin Receptors: From Discovery to Structure to Medicines.

Immunol Rev

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Innate immune cells perform vital tasks in detecting, seeking, and eliminating invading pathogens, thus ensuring host survival. However, loss of function of these cells or their overactive response to tissue injury often causes serious ailments. It is, therefore, crucial to understand at a basic level how these cells function in health and disease.

View Article and Find Full Text PDF

IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced vascular permeability.

J Transl Med

December 2024

Institut de Recherche Biomédicale Des Armées (IRBA), 1, Rue du Lieutenant Raoul Batany, 92141, Clamart, France.

Background: Hemorrhagic shock (HS) corresponds to absolute hypovolemia creating an imbalance between oxygen supply and consumption. This causes an impaired hemostasis, a systemic inflammatory response, and microvascular permeability which can lead to multiple organ failure (MOF). There is no specific treatment for the endothelial dysfunction that plays a major role in the evolution towards MOF.

View Article and Find Full Text PDF

Inflammation is a critical driver of the early stages of diabetic retinopathy (DR) and offers an opportunity for therapeutic intervention before irreversible damage and vision loss associated with later stages of DR ensue. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown mixed efficacy in slowing early DR progression, notably including severe adverse side effects likely due to their nonselective inhibition of all downstream signaling intermediates. In this study, we investigated the role of prostanoids, the downstream signaling lipids whose production is inhibited by NSAIDs, in promoting inflammation relevant to early-stage DR in two human retinal cell types: Müller glia and retinal microvascular endothelial cells.

View Article and Find Full Text PDF

Background: Cardiopulmonary bypass (CPB) causes systemic inflammation during pediatric cardiac surgery, which can contribute to post-operative organ dysfunction and prolonged recovery. This study aims to identify key inflammatory mediators related to this clinically significant immunologic response.

Methods: Pediatric patients were enrolled in a single-arm prospective clinical study (NCT05154864) and received standard cardiac operation, CPB and subzero-balance ultrafiltration.

View Article and Find Full Text PDF

Hornerin expressed on endothelial cells via interacting with thrombomodulin modulates vascular inflammation and angiogenesis.

Biochim Biophys Acta Mol Cell Res

December 2024

Department of Anesthesiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo city, Shimane 693-8501, Japan. Electronic address:

Thrombomodulin is predominantly expressed on vascular endothelial cells and modulates endothelial cell functions by interacting with multiple ligands. The specific thrombomodulin receptor or cofactor active on the endothelial cell surface remains elusive. This study aims to identify interacting partners of thrombomodulin on endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!