Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.2.1.3; ACS). Escherichia coli has a single ACS, FadD, that is essential for growth when fatty acids are the sole carbon and energy source. Rodents have five ACS isoforms that differ in substrate specificity, tissue expression, and subcellular localization and are believed to channel fatty acids toward distinct metabolic pathways. We expressed rat ACS isoforms 1-5 in an E. coli strain that lacked FadD. All rat ACS isoforms were expressed in E. coli fadD or fadDfadR and had ACS specific activities that were 1.6-20-fold higher than the wild type control strain expressing FadD. In the fadD background, the rat ACS isoforms 1, 2, 3, 4 and 5 oxidized [(14)C]oleate at 5 to 25% of the wild type levels, but only ACS5 restored growth on oleate as the sole carbon source. To ensure that enzymes of beta-oxidation were not limiting, assays of ACS activity, beta-oxidation, fatty acid transport, and phospholipid synthesis were also examined in a fadD fadR strain, thereby eliminating FadR repression of the transporter FadL and the enzymes of beta-oxidation. In this strain, fatty acid transport levels were low but detectable for ACS1, 2, 3, and 4 and were nearly 50% of wild type levels for ACS5. Despite increases in beta-oxidation, only ACS5 transformants were able to grow on oleate. These studies show that although ACS isoforms 1-4 variably supported moderate transport activity, beta-oxidation, and phospholipid synthesis and although their in vitro specific activities were greater than that of chromosomally encoded FadD, they were unable to substitute functionally for FadD regarding growth. Thus, membrane composition and protein-protein interactions may be critical in reconstituting bacterial ACS function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M311392200 | DOI Listing |
ACS Chem Neurosci
January 2025
Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan.
Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [F]FDDNP, [C]PBB3, [F]flortaucipir, and the [F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratorio de Glicobiología y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México.
The human CMP-sialic acid transporter (hCST) is a mammalian highly conserved type III antiporter that translocates CMP-sialic acid into the Golgi lumen, supporting sialylation. Although different works have focused on elucidating structure-function relationships in the hCST, this is the first study to address them in an alternatively spliced isoform. We have previously reported the expression of a functional human del177 isoform that has skipping of exon 6, resulting in a loss of 59 amino acids, without change in the open reading frame and conserving its C-terminal region.
View Article and Find Full Text PDFACS Bio Med Chem Au
December 2024
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Chlorophyll (Chl) is one of Nature's most complex pigments to biosynthesize and derivatize. This pigment is vital for survival and also paradoxically toxic if overproduced or released from a protective protein scaffold. Therefore, along with the mass production of Chl, organisms also invest in mechanisms to control its degradation and recycling.
View Article and Find Full Text PDFACS Med Chem Lett
December 2024
NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence Italy.
Several antiepileptic drugs (AEDs) have been found to inhibit human carbonic anhydrases (hCAs), paving the way for repurposing AEDs for the treatment of various diseases, including cancer. Here, the hCAs inhibitory effects of levetiracetam, a highly prescribed AED that does not bear a common zinc-binding group, were investigated and . Levetiracetam inhibited all tested hCAs, although with a specific profile compared to the reference acetazolamide, with remarkable efficacy against tumor-associated hCA IX and XII.
View Article and Find Full Text PDFACS Med Chem Lett
December 2024
Ventus Therapeutics, 4800 rue Lévy #110, Saint-Laurent H4R 2P1, Quebec, Canada.
Using a high-throughput screening (HTS) approach, a new GTP-site binding pyridine-carboxylate series of cGAS inhibitors was discovered. The biochemical potency of this new pyridine carboxylate series was improved 166-fold from the original hit to double-digit nanomolar levels using structure-based design insights, but the series was found to suffer from low permeability and low bioavailability. A structure-based hybridization of the metal-binding motifs of the pyridine carboxylate series and our previously disclosed tetrahydrocarboline GTP-site ligand identified pyrimidine amide compound .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!