Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein.

J Biol Chem

Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA.

Published: March 2004

Internally located, cis-acting RNA replication elements, termed cres, are essential for replication of the genomes of picornaviruses such as human rhinovirus 14 (HRV-14) and poliovirus because they template uridylylation of the protein primer, VPg, by the polymerase 3D(pol). These cres form stem-loop structures sharing a common loop motif, and the HRV-14 cre can substitute functionally for the poliovirus cre in both uridylylation in vitro and RNA replication in vivo. We show, however, that the poliovirus cre is unable to support HRV-14 RNA replication. This lack of complementation maps to the stem of the poliovirus cre and was reversed by single nucleotide substitutions in the stem as well as the base of the loop. Replication-competent, revertant viruses rescued from dicistronic HRV-14 RNAs containing the poliovirus cre, or a chimeric cre containing the poliovirus stem, contained adaptive amino acid substitutions. These mapped to the surface of both the polymerase 3D(pol), at the tip of the "thumb" domain, and the protease 3C(pro), on the side opposing the active site and near the end of an extended strand segment implicated previously in RNA binding. These mutations substantially enhanced replication competence when introduced into HRV-14 RNAs containing the poliovirus cre, and they were additive in their effects. The data support a model in which 3CD or its derivatives 3C(pro) and 3D(pol) interact directly with the stem of the cre during uridylylation of VPg.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M312992200DOI Listing

Publication Analysis

Top Keywords

poliovirus cre
20
rna replication
16
cis-acting rna
8
polymerase 3dpol
8
cre
8
cre uridylylation
8
hrv-14 rnas
8
rnas poliovirus
8
poliovirus
7
replication
6

Similar Publications

Qualitative real-time RT-PCR assay for nOPV2 poliovirus detection.

J Virol Methods

September 2024

Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Saint Petersburg, Russia; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia.

Based on the success of the Sabin2-based vaccine, a next-generation nOPV2 poliovirus vaccine has been developed. For epidemic monitoring and conducting epidemiological investigations, it is necessary to have a diagnostic assay with the ability to differentiate this variant from others. Here we describe such a real-time RT-PCR assay.

View Article and Find Full Text PDF

Co-folding and RNA activation of poliovirus 3C polyprotein precursors.

J Biol Chem

November 2023

Department of Biochemistry & Molecular Birology, Colorado State University, Fort Collins, Colorado, USA. Electronic address:

Positive-strand RNA viruses use long open reading frames to express large polyproteins that are processed into individual proteins by viral proteases. Polyprotein processing is highly regulated and yields intermediate species with different functions than the fully processed proteins, increasing the biochemical diversity of the compact viral genome while also presenting challenges in that proteins must remain stably folded in multiple contexts. We have used circular dichroism spectroscopy and single molecule microscopy to examine the solution structure and self-association of the poliovirus P3 region protein composed of membrane binding 3A, RNA priming 3B (VPg), 3C protease, and 3D RNA-dependent RNA polymerase proteins.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) can cause hand, foot and mouth disease with neurological and systemic complications, most frequently affecting children and infants. We describe a acting replication element () with a conserved stem-loop structure within the EV-A71 2C-coding region. By site-directed mutagenesis and reverse genetics using the EV-A71 full-length genome and the EV-A71 replicon containing the firefly luciferase reporter gene in place of the P1 region, the stem-loop structure and the AAACA in the loop of the were confirmed to be required for the EV-A71 replication phenotype.

View Article and Find Full Text PDF

Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process.

View Article and Find Full Text PDF

Initiation of protein-primed picornavirus RNA synthesis.

Virus Res

August 2015

Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.

Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!